• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 760
  • 681
  • 535
  • 98
  • 79
  • 53
  • 46
  • 37
  • 31
  • 27
  • 23
  • 21
  • 21
  • 21
  • 21
  • Tagged with
  • 2622
  • 2622
  • 567
  • 488
  • 483
  • 350
  • 344
  • 312
  • 303
  • 302
  • 301
  • 274
  • 264
  • 250
  • 237
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Corrosion Damage of Reinforcement Embedded in Reinforced Concrete Slab

Gao, Zhicheng January 2016 (has links)
No description available.
562

Experimental analysis of composite reinforced concrete beams

Ball, Ryan January 1998 (has links)
No description available.
563

Experimental Evaluation of Reinforcement Methods for Concrete Beam-Column Joints

Fisher, Matthew John 03 September 2009 (has links)
No description available.
564

A Feasibility Study of BBP for predicting shear capacity of FRP reinforced concrete beams without stirrups.

Golafshani, E.M., Ashour, Ashraf 18 February 2016 (has links)
yes / Shear failure of concrete elements reinforced with Fiber Reinforced Polymer (FRP) bars is generally brittle, requiring accurate predictions to avoid it. In the last decade, a variety of artificial intelligence based approaches have been successfully applied to predict the shear capacity of FRP Reinforced Concrete (FRP-RC). In this paper, a new approach, namely, biogeography-based programming (BBP) is introduced for predicting the shear capacity of FRP-RC beams based on test results available in the literature. The performance of the BBP model is compared with several shear design equations, two previously developed artificial intelligence models and experimental results. It was found that the proposed model provides the most accurate results in calculating the shear capacity of FRP-RC beams among the considered shear capacity models. The proposed BBP model can also correctly predict the trend of different influencing variables on the shear capacity of FRP-RC beams.
565

A generalized solution for the design of one-way and two-way reinforced concrete slabs

Al-Khafaji, Abbas Nasir 02 June 2010 (has links)
In this thesis an evaluation is made of the results of approximately 1200 designs for one-way and two-way slabs meeting the requ1rements of the A.C.I. Code (1). The parameters have been chosen to cover a wide range of practical design conditions. The data resulting from these designs have been plotted using dimensionless parameters evaluated from a dimensional analysis approach. Curves fitting the data proved to be continuous over the working range, so equations for the curves were developed. Data from the original designs were compared with results computed from the developed equations. In a few cases maximum deviations of less than three percent were found. The average deviation for all designs was found to be less than one percent. / Master of Science
566

Nondestructive evaluation of reinforced concrete via infrared thermography: a feasibility study

Lee, Jeffrey Allen 08 April 2009 (has links)
An experimental investigation was conducted to develop a laboratory technique for the nondestructive evaluation of reinforced concrete. The methodologies were developed with the intent of eventual field implementation to determine the feasibility of utilizing infrared thermography to inspect substructural elements of concrete bridges. Several specimen configurations were fabricated for thermographic inspection. A number of tests were performed on a variety of concrete specimens to determine the implementation parameters of the technique. The necessity of utilizing artificial heating methods for thermal input prior to inspection was evaluated. The present study suggests that infrared thermography cannot be applied to substructural elements of bridges in a noncontact fashion. Internal thermal gradients produced by diurnal temperature fluctuation generally are not sufficient to produce the variations in surface temperature patterns necessary for thermographically detecting nonvisual subsurface defects. Rather, both the envelopment and artificial heating of the substructural element is required prior to thermographic inspection. / Master of Science
567

Influence of Bridge Deck Concrete Parameters on the Reinforcing Steel Corrosion

Balakumaran, Soundar Sriram G. 25 May 2010 (has links)
Chloride induced corrosion of steel in concrete is one of the major forms of deterioration mechanisms found in reinforced concrete bridges. Early age corrosion damage reduces the lifespan of the bridges, which results in heavy economic losses. Research has been conducted to identify economic solutions for significantly delaying and/or preventing corrosion damage. Considering the amount of steel reinforcement used in bridge decks, the influence of as constructed parameters including clear spacing between top and bottom reinforcement bars, ratio of cathode to anode areas, and presence of stay-in-place forms on corrosion activity needs to be evaluated. The influence of the as constructed parameters have been studied using different corrosion assessment methods including resistivity, half-cell potential, linear polarization, chloride content, moisture content, and visual inspection. This study included the clear spacing distances between the anode and cathode of 51, 76, and 102 mm (2, 3, and 4-inch), number of cathodes as 1 and 2, and the presence and absence of stay-in-place forms. Data up to 15 months were taken from a previous study by Smolinski and integrated into the current study period of 35 to 45 months. A trend line may be established to illustrate the changes which took place over the missing time period, from approximately 15 to 35 months, since the specimens were maintained in controlled environment. Analysis of the data showed that there is a significant difference between the spacing values (2, 3, and 4-inch) through all forms of evaluations. Regarding the other parameters, no significant difference was identified. Variations in resistivity with increasing spacing, even when the water-cement ratio was kept at 0.50, maybe the result of the difference in unit consolidation between the clear spacing specimens. Thus, the corrosion mechanism observed in this study may be resistivity-controlled. Also, autopsy showed that corrosion on the top bars was in general agreement with the measured corrosion activity. The bottom bars had no visible corrosion and the chloride had not penetrated to the bottom bars, regardless of the separation distance between the top and bottom bars. For this laboratory study, the measurements showed that macrocell corrosion influence on the total corrosion was insignificant. / Master of Science
568

Effect of Corrosion on the Behavior of Reinforced Concrete Beams Subject to Blast Loading

Myers, Daniel Lloyd 13 May 2024 (has links)
Corrosion of reinforcing steel embedded in concrete due to the presence of moisture, aggressive chemicals, inadequate cover, and other factors can lead to deterioration that substantially reduces the strength and serviceability of the affected structure. Accounting for corrosion degradation is critical for evaluation and assessment of the load carrying capacity of existing reinforced concrete (RC) structures. However, little is known about the relationship between high strain rate blast loading and the degradation effects that govern corrosion damaged structures such as concrete cover cracking, reduction in reinforcement areas, and deterioration of bond between concrete and steel. Ten identical RC beams were constructed and tested, half under blast loading conditions produced using the Virginia Tech Shock Tube Research Facility and the other half under quasi-static loading. The blast tests were conducted to investigate how increasing blast pressure and impulse affect the global displacement response and damage modes of beams subjected to blast loads. The quasi-static tests were performed to establish fundamental data on the load-deflection characteristics of corroded RC beams. One beam from each testing group served as a control specimen and was not corroded while the remaining beams were subjected to varying levels of corrosion (5%, 10%, 15%, and 20%) of the longitudinal reinforcement along the midspan region. The specimens were corroded using an accelerated corrosion technique in a tank of 3% sodium chloride solution and a constant electrical current, creating a controlled environment for varying levels of corrosion. An analytical model was also created using a single degree of freedom (SDOF) approach which predicted the performance of corroded RC beams under blast loading. The results of the quasi-static tests revealed that as corrosion levels increased, the load to cause yielding decreased, the yield displacements decreased, and failure occurred earlier for all specimens. This was accompanied by increased damage to the concrete cover and the addition of longitudinal corrosion induced cracking. For the blast loaded specimens, the results demonstrated that the maximum displacements and residual displacements increased beyond the expected response limits for corrosion levels greater than 5%, but at corrosion levels less than 5% there was no significant change in displacements. Damage levels increased by one or more categories with the introduction of even small levels of corrosion of less than 5%. At corrosion levels greater than 5%, before loading was applied, the specimens exhibited moderate damage due to the introduction of corrosion induced cracking. After loading, the specimens sustained hazardous damage at progressively lower blast volumes. The failure mode changed from ductile to sudden and brittle failure at corrosion levels greater than 5% but remained ductile with flexural failures at low corrosion levels below 5%. The experimental results could be predicted with a high level of accuracy using the SDOF approach, provided that the degraded strength of corroded concrete cover, degraded mechanical properties of corroded steel, length of the corroded region, and determination of either uniform or pitting corrosion are accounted for. Overall, the introduction of corrosion to an RC beam subjected to blast loading resulted in decreased strength and ductility across all specimens but with most disastrous effects occurring at corrosion levels of 5% or greater. A recommendation is made to adjust the response limits in ASCE/SEI 59 to account for corrosion in RC beams. / Master of Science / The threat of blast loads, resulting from either terrorist attacks or accidental explosions, poses a significant threat to the structural integrity of buildings, life safety of occupants, and the functionality of the structure. Corrosion of reinforcing steel embedded in concrete, due to the presence of moisture, aggressive chemicals, and other factors, can lead to deterioration that substantially weakens the affected structure. Accounting for corrosion degradation is critical for evaluation and assessment of the strength of existing reinforced concrete structures. However, little is known about the effects of blast loading on the adverse nature that governs corrosion damaged structures. Ten identical reinforced concrete beams were constructed and tested, half under blast loading and the other half under quasi-static loading. The blast loaded beams were subjected to a series of increasing blast volumes until failure was reached. Five identical beams were tested under quasi-static loading to provide a baseline comparison against the blast loaded beams. One beam from each testing group served as a control specimen and was not corroded while the remaining beams were subjected to varying levels of corrosion of the steel reinforcement. An analytical model was also created to predict the performance of corroded reinforced concrete beams under blast loading. The results of the study showed that as corrosion levels increased, the displacements increased beyond the expected response limits. Damage levels became increasingly more severe with the introduction of corrosion at all levels. The behavior changed from ductile to brittle at corrosion levels greater than 5% but remained ductile with flexural failures at corrosion levels below 5%. Overall, the introduction of corrosion to a concrete beam subjected to blast loading resulted in decreased strength and ductility across all specimens but with most disastrous effects occurring at corrosion levels of 5% or greater. A recommendation is made to adjust the response the limits in the code to account for corrosion in reinforced concrete beams.
569

Moment-rotation relationships of reinforced concrete beams with and without web openings

Cheng, Robert Chung-nan January 1965 (has links)
In developing inelastic methods of analyzing indeterminate reinforced concrete frameworks, one of the fundamental relationships that must be determined is that of moment versus rotation. In order for moment redistribution to take place, the cross-section must have adequate rotational capacity so that "hinges" can form. This thesis reports some recent findings showing that reinforced concrete members do possess considerable ductility and ability to form such hinges. Specifically, results are presented on a series of 4" x 7" x 6” -0" beams loaded at the third points up to and beyond their ultimate capacities. Comparisons are made of ultimate moments and moment-rotation relationships for beams with and without web openings. The web openings are made in the tension zone of the beams; they vary in size from one-third to two-thirds of the affective area. The range of steel area is from 1% to 3%. / M.S.
570

Modified ACI Drop-Weight Impact Test for Concrete.

Badr, A., Ashour, Ashraf 01 1900 (has links)
yes / ACI Committee 544’s repeated drop-weight impact test for concrete is often criticized for large variations within the results. This paper identifies the sources of these large variations and accordingly suggests modifications to the ACI test. The proposed modifications were evaluated and compared to the current ACI test by conducting impact resistance tests on 40 specimens from two batches of polypropylene fiber-reinforced concrete (PPFRC). The results obtained from both methods were statistically analyzed and compared. The variations in the results were investigated within the same batch and between different batches of concrete. The impact resistance of PPFRC specimens tested with the current ACI test exhibited large coefficients of variation (COV) of 58.6% and 50.2% for the first-crack and the ultimate impact resistance, respectively. The corresponding COV for PPFRC specimens tested according to the modified technique were 39.4% and 35.2%, indicating that the reliability of the results was significantly improved. It has been shown that, using the current ACI test, the minimum number of replications needed per each concrete mixture to obtain an error below 10% was 41 compared to 20 specimens for the modified test. Although such a large number of specimens is not good enough for practical and economical reasons, the reduction presents a good step on the development of a standard impact test.

Page generated in 0.0701 seconds