• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flexural Strength, Ductility, and Serviceability of Beams that Contain High-Strength Steel Reinforcement and High-Grade Concrete

Yosefani, Anas 06 June 2018 (has links)
Utilizing the higher capacity steel in design can provide additional advantages to the concrete construction industry including a reduction of congestion, improved concrete placement, reduction in the required reinforcement and cross sections which would lead to savings in materials, shipping, and placement costs. Using high-strength reinforcement is expected to impact the design provisions of ACI 318 code and other related codes. The Applied Technology Council (ATC-115) report "Roadmap for the Use of High-Strength Reinforcement in Reinforced Concrete Design" has identified key design issues that are affected by the use of high-strength reinforcement. Also, ACI ITG-6, "Design Guide for the Use of ASTM A1035 Grade 100 Steel Bars for Structural Concrete" and NCHRP Report 679, "Design of Concrete Structures Using High-Strength Steel Reinforcement" have made progress towards identifying how code provisions in ACI 318 and AASHTO could be changed to incorporate high-strength reinforcement. The current research aims to provide a closer investigation of the behavior of beams reinforced with high-strength steel bars (including ASTM A615 Grade 100 and ASTM A1035 Grades 100 and 120) and high-strength concrete up to 12000 psi. Focus of the research is on key design issues including: ductility, stiffness, deflection, and cracking. The research includes an extensive review of current literature, an analytical study and conforming experimental tests, and is directed to provide a number of recommendations and design guidelines for design of beams reinforced with high-strength concrete and high-strength steel. Topics investigated include: strain limits (tension-controlled and compression-controlled, and minimum strain in steel); possible change for strength reduction factor equation for transition zone (Φ); evaluation of the minimum reinforcement ratio (þmin); recommendations regarding limiting the maximum stress for the high-strength reinforcement; and prediction of deflection and crack width at service load levels. Moreover, this research includes long-term deflection test of a beam made with high grade concrete and high-strength steel under sustained load for twelve months to evaluate the creep deflection and to insure the appropriateness of the current ACI 318 time-dependent factor, λ, which does not consider the yield strength of reinforcement and the concrete grade.
2

Seismic retrofitting of rectangular reinforced concrete columns with partial interaction plating

Wu, Y. F. (Yu-Fei) January 2002 (has links) (PDF)
"June 2002" Includes bibliographical references (leaves 349-374)
3

Seismic retrofitting of rectangular reinforced concrete columns with partial interaction plating / by Yu-Fei Wu.

Wu, Y. F. (Yu-Fei) January 2002 (has links)
"June 2002" / Includes bibliographical references (leaves 349-374) / xxxix, 416 leaves : ill., plates ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Civil and Environmental Engineering, 2002

Page generated in 0.0998 seconds