• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Serviceability-based design approach for reinforced embankments on soft clay

Panesar, Harpreet Singh 14 June 2005
The mechanism of soil-reinforcement interaction for a reinforced embankment on soft clay has been explored by conducting a parametric study using a coupled non-linear elastoplastic finite element program. One of the major issues in the design of a reinforced embankment on soft clay is the magnitude of tension that can be mobilized in the geosynthetic reinforcement. Previous research using geotechnical centrifuge modelling and present research using finite element modelling has confirmed that the tension mobilized in the reinforcement is only of the order of active lateral thrust in the embankment. The parametric study has revealed that the soil-reinforcement interaction mechanism depends on the ratio of embankment height to the depth of the clay layer. The embankment behaves similar to a rigid footing in case of deep clay deposit. In this case, the failure mechanism is similar to a slip circle and there is very little contribution from the clay-reinforcement interface towards the mobilization of reinforcement tension. However, if the depth of clay deposit is small, the soil-reinforcement interaction mode is similar to direct shear failure and slip surface is located close to the clay-reinforcement interface. In this case, the contribution of clay-reinforcement interface towards the tension mobilized in the reinforcement is higher and therefore, the contribution of the reinforcement towards overall stability of the embankment is greater. Based on the results of the parametric study a novel serviceability criterion is proposed that aims to limit the lateral deformation of the clay foundation at the toe of the embankment by limiting the allowable mobilized tension in the reinforcement. A simple procedure for the evaluation of the efficiency of soil-reinforcement interface for reinforced embankments on soft clays is also proposed. The validity of the proposed serviceability criterion and the design charts was successfully tested using two field case studies. Sackville test embankment constructed to failure in 1989 and a levee test section that remained serviceable after construction in 1987 at Plaquemine, Louisiana were able to confirm the validity of the serviceability criterion proposed in the present study.
2

Serviceability-based design approach for reinforced embankments on soft clay

Panesar, Harpreet Singh 14 June 2005 (has links)
The mechanism of soil-reinforcement interaction for a reinforced embankment on soft clay has been explored by conducting a parametric study using a coupled non-linear elastoplastic finite element program. One of the major issues in the design of a reinforced embankment on soft clay is the magnitude of tension that can be mobilized in the geosynthetic reinforcement. Previous research using geotechnical centrifuge modelling and present research using finite element modelling has confirmed that the tension mobilized in the reinforcement is only of the order of active lateral thrust in the embankment. The parametric study has revealed that the soil-reinforcement interaction mechanism depends on the ratio of embankment height to the depth of the clay layer. The embankment behaves similar to a rigid footing in case of deep clay deposit. In this case, the failure mechanism is similar to a slip circle and there is very little contribution from the clay-reinforcement interface towards the mobilization of reinforcement tension. However, if the depth of clay deposit is small, the soil-reinforcement interaction mode is similar to direct shear failure and slip surface is located close to the clay-reinforcement interface. In this case, the contribution of clay-reinforcement interface towards the tension mobilized in the reinforcement is higher and therefore, the contribution of the reinforcement towards overall stability of the embankment is greater. Based on the results of the parametric study a novel serviceability criterion is proposed that aims to limit the lateral deformation of the clay foundation at the toe of the embankment by limiting the allowable mobilized tension in the reinforcement. A simple procedure for the evaluation of the efficiency of soil-reinforcement interface for reinforced embankments on soft clays is also proposed. The validity of the proposed serviceability criterion and the design charts was successfully tested using two field case studies. Sackville test embankment constructed to failure in 1989 and a levee test section that remained serviceable after construction in 1987 at Plaquemine, Louisiana were able to confirm the validity of the serviceability criterion proposed in the present study.
3

EFFECTS OF REINFORCEMENT AND SOIL VISCOSITY ON THE BEHAVIOUR OF EMBANKMENTS OVER SOFT SOIL

TAECHAKUMTHORN, CHALERMPOL 25 January 2011 (has links)
A verified elasto-viscoplastic finite element model is used to develop a better understanding of the performance of embankments with geosynthetic reinforcement constructed over rate-sensitive soil. The interaction between reinforcement and prefabricated vertical drains (PVDs) and their effects on time-dependent behaviour of embankments are examined. For rate-sensitive soils, the generation of creep-induced pore pressures following the end of construction is evident along the potential slip surface. As a result, the minimum factor of safety with respect to embankment stability occurs after the end of construction. The combined use of reinforcement and PVDs are shown to provide an effective means of minimizing creep-induced excess pore pressure, increasing overall stability, and decreasing deformation of the embankments. The combined effects of the viscoelastic properties of geosynthetic reinforcement (polyester, polypropylene and polyethylene) and the rate-sensitive nature of foundation soils on the performance of embankments are examined. The effect of various factors, including reinforcement type (i.e., stiffness and viscosity), soil viscosity, construction rate and allowable long-term reinforcement strain, on the time-dependent behaviour of embankments are considered. The long-term performance of reinforced embankments is investigated for different maximum allowable long-term reinforcement strains. From a series of finite element analyses, the ideal allowable reinforcement strains to minimize embankment deformation while providing optimum long-term service height of the embankment, considering the effect of soil and reinforcement viscosity, are proposed for soils similar to those examined in this study. The currently proposed design methods for embankments with creep-susceptible reinforcement over rate-sensitive soils appear to be overly conservative. This study proposes a refined approach for establishing the allowable long-term reinforcement strains that are expected to provide adequate performance while reducing the level of conservativeness of reinforced embankment design. Finally, a previously developed elasto-viscoplastic constitutive model is modified to incorporate the effect of soil structure using a state-dependent fluidity parameter and damage law. The model was evaluated against data from a well-documented case study of a reinforced test embankment constructed on a sensitive Champlain clay deposit in Saint Alban, Quebec. The benefit of basal reinforcement and the effect of reinforcement viscosity are then discussed for these types of soil deposits. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2011-01-21 22:26:40.133
4

Análise numérica e analítica de aterros reforçados sobre solos moles com uma camada superficial de areia. / Numeric and analitic analysis of reinforcement embankments on soft clayey soil with a superficial sand layer.

Fuertes Ampuero, Milagros Victoria 13 August 2012 (has links)
Os aterros reforçados sobre solo mole de resistência crescente com a profundidade, podem apresentar problemas durante o processo construtivo com respeito às rupturas e aos recalques inesperados. O presente trabalho visa avaliar o comportamento dos aterros reforçados a través de um estudo numérico, levando aos aterros até a ruptura sob condição não-drenada devido ao carregamento rápido, com o objetivo de estimar a influência da rigidez do reforço nas deformações, além disso, estudar o mecanismo da interação solo-reforço para um aterro reforçado. Foi utilizada a metodologia apresentada por Hinchberger & Rowe (2003), que leva em conta os recalques imediatos durante e após a construção. As análises numéricas de tensão-deformação foram realizadas pelo software PHASE 2, a calibração do programa foi feita com a literatura de aterros reforçados. Pretendeu-se mostrar a influência de uma camada superficial de areia sobre a argila mole na altura de ruptura e na deformação do reforço. Pelo método de elementos finitos foi definida uma metodologia para calcular as deformações do reforço para uma altura determinada e avaliar a estabilidade mediante o método de equilíbrio limite. Além disso, essa metodologia pode ser empregada para dimensionar o reforço requerido para um determinado fator de segurança. / Reinforced embankments on soft clayey soil where the strength increases with depth may present problems during construction process relative to failure and unexpected settlements. This study aims to evaluate the embankments behavior with a numerical study; the embankments were taken to failure in the undrained shear strength condition due to rapid upload to study the effect of reinforcement tensile stiffness on the reinforcement strains. Besides, it aimed to study the mechanism of soil-reinforcement interaction for a reinforced embankment. The method of Hinchberger & Rowe (2003) was used, which considers the displacements before and post construction. The numeric analysis of stress-strain was performed by the software PHASE 2; the calibration of the software was made according to published reinforced embankment literature. The study intends to show the influence of a sand layer above the clayey soil, on the failure height and reinforcement strains. Based on finite elements methods, a methodology was defined to estimate the reinforcement strains for a required design height and to study the stability by performing limit equilibrium analysis. Furthermore, this methodology could be used to specify the required reinforcement stiffness for a specific factor of safety.
5

Análise numérica e analítica de aterros reforçados sobre solos moles com uma camada superficial de areia. / Numeric and analitic analysis of reinforcement embankments on soft clayey soil with a superficial sand layer.

Milagros Victoria Fuertes Ampuero 13 August 2012 (has links)
Os aterros reforçados sobre solo mole de resistência crescente com a profundidade, podem apresentar problemas durante o processo construtivo com respeito às rupturas e aos recalques inesperados. O presente trabalho visa avaliar o comportamento dos aterros reforçados a través de um estudo numérico, levando aos aterros até a ruptura sob condição não-drenada devido ao carregamento rápido, com o objetivo de estimar a influência da rigidez do reforço nas deformações, além disso, estudar o mecanismo da interação solo-reforço para um aterro reforçado. Foi utilizada a metodologia apresentada por Hinchberger & Rowe (2003), que leva em conta os recalques imediatos durante e após a construção. As análises numéricas de tensão-deformação foram realizadas pelo software PHASE 2, a calibração do programa foi feita com a literatura de aterros reforçados. Pretendeu-se mostrar a influência de uma camada superficial de areia sobre a argila mole na altura de ruptura e na deformação do reforço. Pelo método de elementos finitos foi definida uma metodologia para calcular as deformações do reforço para uma altura determinada e avaliar a estabilidade mediante o método de equilíbrio limite. Além disso, essa metodologia pode ser empregada para dimensionar o reforço requerido para um determinado fator de segurança. / Reinforced embankments on soft clayey soil where the strength increases with depth may present problems during construction process relative to failure and unexpected settlements. This study aims to evaluate the embankments behavior with a numerical study; the embankments were taken to failure in the undrained shear strength condition due to rapid upload to study the effect of reinforcement tensile stiffness on the reinforcement strains. Besides, it aimed to study the mechanism of soil-reinforcement interaction for a reinforced embankment. The method of Hinchberger & Rowe (2003) was used, which considers the displacements before and post construction. The numeric analysis of stress-strain was performed by the software PHASE 2; the calibration of the software was made according to published reinforced embankment literature. The study intends to show the influence of a sand layer above the clayey soil, on the failure height and reinforcement strains. Based on finite elements methods, a methodology was defined to estimate the reinforcement strains for a required design height and to study the stability by performing limit equilibrium analysis. Furthermore, this methodology could be used to specify the required reinforcement stiffness for a specific factor of safety.
6

A prologue to the post coal-mining era

Jonas, Lisa January 2019 (has links)
The surface mine Hambach is located in the west of Germany, close to Cologne and was founded in 1978 from the electric company RWE to dig up brown coal and produce electricity. The mine measures a surface of 8.500ha and a depth of 470 m and was planned to be operated until 2045. After mining RWE plans to recultivate the area with forest, agriculture and a remaining lake of 3900ha. The mine is a site that is out of proportion. This proposal is a composition of interventions in different time and scale aiming to tell the story of soil, water, vegetation, animals and humans. The excavator is a scale figure to these dimensions and becomes the protagonist of the story. On it‘s way down to its final position at the bottom of the pit, it is sculpting the soil one last time. After that last operation nature will take over. Water will find its path and reshape the pattern of the excavator. With water, vegetation comes back and then gives space for animals to live and humans to watch the transition from a colourful desert to a flourishing oasis. This stream of interventions is connecting the pit‘s terraces to a spiral sculpture that over time will fill with water.

Page generated in 0.0891 seconds