Spelling suggestions: "subject:"rekurentinė seja"" "subject:"rekurentinė sea""
1 |
Composite numbers in the sequences of integers / Sudėtiniai skaičiai sveikųjų skaičių sekoseNovikas, Aivaras 17 October 2012 (has links)
The topics examined in this thesis were the subject of my research as a PhD student at the Faculty of Mathematics and Informatics of Vilnius University. The presented investigation concerns the existence of composite numbers in some special sequences, such as the sequence of integer parts of powers of a fixed number and a linear recurrence sequence consisting of integer numbers.
The thesis consists of the introduction, 3 sections, conclusions and bibliography.
In Section 1 we consider composite numbers in the sequences of integer parts of powers of rational numbers and prove that the sequence [ξ(5/4)^n], n=1,2,..., where ξ is an arbitrary positive number, contains infinitely many composite numbers. Furthermore, it is shown that there are infinitely many positive integers n such that ([ξ(5/4)^n]; 6006)>1, where 6006 = 2•3•7•11•13. Similar results are obtained for shifted powers of some other rational numbers. In particular, the same is proved for the sets of integers nearest to ξ(5/3)^n and to ξ(7/5)^n, n=1,2,.... The corresponding sets of possible divisors are also described.
In Section 2 we consider composite numbers in the binary linear recurrence sequences and prove that for every pair of integer numbers (a; b), where b≠0 and (a; b)≠(±2; -1), there exist two positive relatively prime composite integers x_1, x_2 such that the sequence given by x_{n+1}=ax_n+bx_{n-1}, n=2,3,..., consists of composite terms only, i.e., the absolute value of each term is a composite integer... [to full text] / Temos, nagrinėjamos šioje disertacijoje, buvo doktorantūros studijų Vilniaus universiteto Matematikos ir informatikos fakultete objektas. Pateikti tyrimai yra susiję su sudėtinių skaičių egzistavimu tokiose sekose kaip fiksuoto skaičiaus laipsnių sveikųjų dalių seka bei tiesinė rekurentinė seka, sudaryta iš sveikųjų skaičių.
Disertaciją sudaro įvadas, 3 skyriai, išvados ir literatūros sąrašas.
Pirmame skyriuje nagrinėjami sudėtiniai skaičiai racionaliųjų skaičių laipsnių sveikųjų dalių sekoje bei yra įrodoma, kad sekoje [ξ(5/4)^n], n=1,2,..., kur ξ yra bet koks teigiamas skaičius, yra be galo daug sudėtinių skaičių. Be to, įrodoma, kad yra be galo daug tokių natūraliųjų skaičių n, kad ([ξ(5/4)^n]; 6006)>1, čia 6006 = 2•3•7•11•13. Įrodoma panašių rezultatų pastumtoms kai kurių kitų racionaliųjų skaičių sekoms. Pavyzdžiui, tas pats įrodoma sveikųjų skaičių, esančių arčiausiai ξ(5/3)^n bei ξ(7/5)^n, n=1,2,..., sekoms. Vėlgi nurodomos atitinkamos galimų daliklių aibės.
Antrame skyriuje nagrinėjami sudėtiniai skaičiai antros eilės tiesinėse rekurentinėse sekose bei įrodoma, kad kiekvienai tokiai sveikųjų skaičių porai (a; b), kad b≠0 ir (a; b)≠(±2; -1), egzistuoja tokie du natūralieji tarpusavyje pirminiai skaičiai x_1, x_2, kad sekoje, apibrėžtoje lygtimi x_{n+1}=ax_n+bx_{n-1}, n=2,3,..., visų narių moduliai yra sudėtiniai skaičiai.
Trečiame skyriuje egiptietiškų trupmenų kontekste nagrinėjamos skaičių, užrašomų tam tikru tiesiniu pavidalu, aibės. Ieškoma, kokie skaičiai... [toliau žr. visą tekstą]
|
Page generated in 0.0776 seconds