Spelling suggestions: "subject:"Relation caire"" "subject:"Relation c3fire""
1 |
Fouille Sous Contraintes de Motifs Fermés dans des Relations n-aires BruitéesCerf, Loïc 09 July 2010 (has links) (PDF)
Les jeux de données décrivant des objets par des propriétés Booléennes sont des relations binaires, c'est à dire des matrices 0/1. Dans une telle relation, un ensemble fermé est un sous-ensemble maximal d'objets partageant le même sous-ensemble maximal de propriétés. L'extraction de ces motifs, satisfaisant des contraintes de pertinences définies par l'utilisateur, a été étudiée en profondeur. Néanmoins, beaucoup de jeux de données sont des relations n-aires, c'est à dire des tenseurs 0/1. Réduire leur analyse à deux dimensions revient à en ignorer d'autres qui sont potentiellement intéressantes. Par ailleurs, la présence de bruit dans les jeux de données réelles conduit à la fragmentation des motifs à découvrir. On généralise facilement la définition d'un ensemble fermé aux relations de plus grande arité et à la tolérance au bruit. Au contraire, généraliser leur extraction est très difficile. Notre extracteur parcourt l'espace des motifs candidats d'une façon originale qui ne favorise aucune dimension. Cette recherche peut être guidée par une très grande classe de contraintes de pertinence que les motifs doivent satisfaire. En particulier, cette thèse étudie des contraintes spécifiques à la fouille de graphes dynamiques. Notre extracteur est plusieurs ordres de grandeurs plus efficace que les algorithmes existants, pourtant plus restreints dans leurs applications. Malgré ces résultats, une approche exhaustive ne peut souvent pas, en un temps raisonnable, lister des motifs tolérants beaucoup de bruit. Dans ce cas, compléter l'extraction avec une agglomération hiérarchique des motifs permet d'arriver à ses fins.
|
2 |
Extraction de relations en domaine de spécialitéMinard, Anne-Lyse 07 December 2012 (has links) (PDF)
La quantité d'information disponible dans le domaine biomédical ne cesse d'augmenter. Pour que cette information soit facilement utilisable par les experts d'un domaine, il est nécessaire de l'extraire et de la structurer. Pour avoir des données structurées, il convient de détecter les relations existantes entre les entités dans les textes. Nos recherches se sont focalisées sur la question de l'extraction de relations complexes représentant des résultats expérimentaux, et sur la détection et la catégorisation de relations binaires entre des entités biomédicales. Nous nous sommes intéressée aux résultats expérimentaux présentés dans les articles scientifiques. Nous appelons résultat expérimental, un résultat quantitatif obtenu suite à une expérience et mis en relation avec les informations permettant de décrire cette expérience. Ces résultats sont importants pour les experts en biologie, par exemple pour faire de la modélisation. Dans le domaine de la physiologie rénale, une base de données a été créée pour centraliser ces résultats d'expérimentation, mais l'alimentation de la base est manuelle et de ce fait longue. Nous proposons une solution pour extraire automatiquement des articles scientifiques les connaissances pertinentes pour la base de données, c'est-à-dire des résultats expérimentaux que nous représentons par une relation n-aire. La méthode procède en deux étapes : extraction automatique des documents et proposition de celles-ci pour validation ou modification par l'expert via une interface. Nous avons également proposé une méthode à base d'apprentissage automatique pour l'extraction et la classification de relations binaires en domaine de spécialité. Nous nous sommes intéressée aux caractéristiques et variétés d'expressions des relations, et à la prise en compte de ces caractéristiques dans un système à base d'apprentissage. Nous avons étudié la prise en compte de la structure syntaxique de la phrase et la simplification de phrases dirigée pour la tâche d'extraction de relations. Nous avons en particulier développé une méthode de simplification à base d'apprentissage automatique, qui utilise en cascade plusieurs classifieurs.
|
3 |
Construction et évolution d'une ressource termino-ontologique dédiée à la représentation de relations n-aires / Construction and evolution of an Ontological and Terminological Resource dedicated to the representation of n-ary relationsTouhami, Rim 05 September 2014 (has links)
Les ontologies sont devenues incontournables pour définir des vocabulaires standardisés ainsi qu'une représentation partagée d'un domaine d'intérêt. La notion de Ressource Termino-Ontologique (RTO) permet d'associer une partie terminologique et/ou linguistique aux ontologies afin d'établir une distinction claire entre la manifestation linguistique (le terme) et la notion qu'elle dénote (le concept). Les RTOs sont actuellement au cœur de nombreuses méthodes, outils et applications de l'Ingénierie des Connaissances (IC), discipline de l'Intelligence Artificielle permettant en particulier de développer des méthodes et des outils de capitalisation de connaissances.L'objectif de cette thèse, qui s'inscrit dans les problématiques de l'IC, est de capitaliser des données expérimentales issues de documents textuels (articles scientifiques, rapports de projet, etc.) afin de pouvoir les réutiliser dans des outils d'aide à la décision. Nous avons d'abord défini la notion de relation n-aire permettant de relier plusieurs arguments et l'avons modélisée dans une nouvelle RTO, baptisée naRyQ. Cette notion de relation n-aire nous a permis de modéliser des mesures expérimentales (e.g. diffusivité de l'oxygène dans un aliment, perméabilité à l'oxygène d'un emballage, broyage d'une biomasse, etc.) réalisées sur différents objets d'études (produit alimentaire, emballage, procédé de transformation, etc.). Afin d'implémenter la plateforme de capitalisation, nommée @Web, nous avons modélisé la RTO naRyQ en OWL/SKOS et défini l'ensemble des contraintes de cohérence qu'elle doit respecter. Enfin, une RTO étant amenée à évoluer pour répondre aux besoins de changement, nous avons proposé une méthode de gestion de l'évolution de cette RTO qui permet de maintenir sa cohérence de manière préventive. Cette méthode est implémentée dans le plug-in Protégé, nommé DynarOnto. / This PhD thesis in Artificial Intelligence deals with knowledge engineering. Ontology, which can be defined as a controlled vocabulary allowing a community to share a common representation of a given area, is one of the key elements of knowledge engineering. Our framework is the capitalization of experimental data extracted from scientific documents (scientific articles, project reports, etc.), in order to feed decision support systems. The capitalization is guided by an ontological and terminological resource (OTR). An OTR associates an ontology with a terminological and/or a linguistic part in order to establish a clear distinction between the term and the notion it denotes (the concept). Experimental data can be represented by n-ary relations linking arguments of the experimentation, i.e. experimental measurements (e.g. oxygen diffusivity in food, oxygen permeability in packaging, biomass grinding, etc.), with studied objects (food, packaging, transformation process, etc.). We have defined the n-ary relation concept and a nary Relation between Quantitative experimental data OTR, called naRyQ. Our modeling relies on OWL2-DL and SKOS, W3C languages. Moreover, we have studied the evolution of such an OTR, extending the existing works taking into account i) the specificity of our OTR which deals with interdependent concepts and ii) its language representation. For that, we have proposed a preventive ontology evolution methodology defining elementary and composed changes based on a set of consistency constraints defined for our naRyQ OTR. Our contributions are implemented in two systems : our naRyQ OTR is nowadays the core of the existing capitalization system @Web and our evolution method is implemented in a Protégé plug-in called DynarOnto.
|
4 |
Extraction de relations en domaine de spécialité / Relation extraction in specialized domainsMinard, Anne-Lyse 07 December 2012 (has links)
La quantité d'information disponible dans le domaine biomédical ne cesse d'augmenter. Pour que cette information soit facilement utilisable par les experts d'un domaine, il est nécessaire de l'extraire et de la structurer. Pour avoir des données structurées, il convient de détecter les relations existantes entre les entités dans les textes. Nos recherches se sont focalisées sur la question de l'extraction de relations complexes représentant des résultats expérimentaux, et sur la détection et la catégorisation de relations binaires entre des entités biomédicales. Nous nous sommes intéressée aux résultats expérimentaux présentés dans les articles scientifiques. Nous appelons résultat expérimental, un résultat quantitatif obtenu suite à une expérience et mis en relation avec les informations permettant de décrire cette expérience. Ces résultats sont importants pour les experts en biologie, par exemple pour faire de la modélisation. Dans le domaine de la physiologie rénale, une base de données a été créée pour centraliser ces résultats d'expérimentation, mais l'alimentation de la base est manuelle et de ce fait longue. Nous proposons une solution pour extraire automatiquement des articles scientifiques les connaissances pertinentes pour la base de données, c'est-à-dire des résultats expérimentaux que nous représentons par une relation n-aire. La méthode procède en deux étapes : extraction automatique des documents et proposition de celles-ci pour validation ou modification par l'expert via une interface. Nous avons également proposé une méthode à base d'apprentissage automatique pour l'extraction et la classification de relations binaires en domaine de spécialité. Nous nous sommes intéressée aux caractéristiques et variétés d'expressions des relations, et à la prise en compte de ces caractéristiques dans un système à base d'apprentissage. Nous avons étudié la prise en compte de la structure syntaxique de la phrase et la simplification de phrases dirigée pour la tâche d'extraction de relations. Nous avons en particulier développé une méthode de simplification à base d'apprentissage automatique, qui utilise en cascade plusieurs classifieurs. / The amount of available scientific literature is constantly growing. If the experts of a domain want to easily access this information, it must be extracted and structured. To obtain structured data, both entities and relations of the texts must be detected. Our research is about the problem of complex relation extraction which represent experimental results, and detection and classification of binary relations between biomedical entities. We are interested in experimental results presented in scientific papers. An experimental result is a quantitative result obtained by an experimentation and linked with information that describes this experimentation. These results are important for biology experts, for example for doing modelization. In the domain of renal physiology, a database was created to centralize these experimental results, but the base is manually populated, therefore the population takes a long time. We propose a solution to automatically extract relevant knowledge for the database from the scientific papers, that is experimental results which are represented by a n-ary relation. The method proceeds in two steps: automatic extraction from documents and proposal of information extracted for approval or modification by the experts via an interface. We also proposed a method based on machine learning for extraction and classification of binary relations in specialized domains. We focused on the variations of the expression of relations, and how to represent them in a machine learning system. We studied the way to take into account syntactic structure of the sentence and the sentence simplification guided by the task of relation extraction. In particular, we developed a simplification method based on machine learning, which uses a series of classifiers.
|
Page generated in 0.0749 seconds