• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topologie symplectique qualitative et quantitative des fibrés cotangents

Broćić, Filip 05 1900 (has links)
Cette thèse explore les propriétés quantitatives et qualitatives des fibrés cotangents T∗M de variétés lisses fermées M, d’un point de vue symplectique. Les aspects quantitatifs concernent le problème d’empilement de boules symplectiques dans un voisinage ouvert W de la section nulle. Nous introduisons une fonction de type distance ρW sur la section nulle M en utilisant l’empilement symplectique de deux boules. Dans le cas où W est le fibré en disques unitaire associé à une métrique riemannienne g, nous montrons comment reconstruire la métrique g à partir de ρW. Comme étape intermédiaire, nous construisons un plongement symplectique de la boule B2n(2/√π) de capacité 4 dans le produit de disques unitaires lagrangiens Bn(1) × Bn(1). Une telle construction implique la conjecture de Viterbo forte pour Bn(1) × Bn(1). Nous donnons aussi une borne sur le rayon relatif de Gromov Gr(M, W) lorsque M admet une action non-contractile de S1. La borne est donnée en termes de l’action symplectique des relevés des orbites non-contractiles de l’action de S1. Nous donnons aussi des exemples de cas où cette borne est optimale. Ce résultat fait partie d’un travail en collaboration avec Dylan Cant. La deuxième partie du travail est liée aux aspects qualitatifs. Nous montrons l’existence d’orbites périodiques de systèmes hamiltoniens sur T∗M pour une grande classe d’hamiltoniens. Un autre aspect qualitatif est la preuve de la conjecture de la corde Arnol’d pour les sous-variétés legendriennes conormales dans le fibré en co-sphères S∗M. Cette partie de la thèse est un travail conjoint avec Dylan Cant et Egor Shelukhin. Nous montrons que pour une sous-variété fermée donnée N ⊂ M, il existe une corde de Reeb non-constante dans (S∗M,α) avec extrémités sur ΛN := ν∗N ∩S∗M, pour toute forme de contact α sur S∗M qui induit la structure de contact standard. / This dissertation explores the quantitative and qualitative properties of the cotangent bundles T ∗M of a closed smooth manifolds M , from the symplectic point of view. Quantitative aspects involve packing the open neighborhood W of the zero section with symplectic balls. We introduce a distance-like function ρW on the zero section M using the symplectic packing of two balls. In the case when W is the unit disc-cotangent bundle associated to the Riemannian metric g, we show how to recover the metric g from ρW . As an intermediate step, we construct a symplectic embedding from the ball B2n(2/√π) of capacity 4 to the product of Lagrangian unit discs Bn(1) × Bn(1). Such a construction implies the strong Viterbo conjecture for Bn(1) × Bn(1). We also give a bound on the relative Gromov width Gr(M, W) when M admits a non-contractible S1-action. The bound is given in terms of the symplectic action of the lift of non-contractible orbits of the S1-action. We also provide examples of when such a bound is sharp. This result is part of the joint work with Dylan Cant. The second part of this joint work is related to the qualitative aspects. We show the existence of periodic orbits of Hamiltonian systems on T ∗M for a large class of Hamiltonians. Another qualitative aspect is proof of the Arnol’d chord conjecture for conormal Legendrians in the co-sphere bundle S∗M . This part of the dissertation is joint work with Dylan Cant and Egor Shelukhin. We show that for a given closed submanifold N ⊂ M there exists a non-constant Reeb chord in (S∗M, α) with endpoints on ΛN := ν∗N ∩ S∗M, for arbitrary contact form α on S∗M which induces standard contact structure.

Page generated in 0.15 seconds