• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Special Reconnaissance : En teoriprövande fallstudie av patrullen bravo två noll, Gulfkriget 1991

Ericsson, Petter January 2018 (has links)
In the new era of hybrid warfare information is key. But information by itself is not enough, decisionmakers want information that is certain and has quality. One method of obtaining this information is special reconnaissance. However, the field of special reconnaissance is slim and hasn’t been researched extensively enough. In the field of special reconnaissance only a single theory exists. That theory is Anders Westbergs theory of special reconnaissance. Westbergs theory states that there is a term called relative certainty. Which is the threshold where there is sufficient actionable intelligence on the opponent or target. To achieve relative certainty there are a certain set of principles which should be fulfilled, these principles are coordination, review, cover, reporting and exploitation. Westbergs theory however is still not tested by an outsider. This study therefore seeks to investigate if Westbergs theory is valid when tested through a qualitative case study on a case that is not only a failure and more modern, but also untested against the theory. The chosen case is the patrol Bravo Two Zero in the Persian Gulf War, 1991. The result shows that Westbergs theory can be used to explain the failure of Bravo Two Zeros mission. Some principles such as reporting shows significant value to the explanation.
2

Fuzzy Preferences in the Graph Model for Conflict Resolution

Bashar, Md. Abul January 2012 (has links)
A Fuzzy Preference Framework for the Graph Model for Conflict Resolution (FGM) is developed so that real-world conflicts in which decision makers (DMs) have uncertain preferences can be modeled and analyzed mathematically in order to gain strategic insights. The graph model methodology constitutes both a formal representation of a multiple participant-multiple objective decision problem and a set of analysis procedures that provide insights into them. Because crisp or definite preference is a special case of fuzzy preference, the new framework of the graph model can include---and integrate into the analysis---both certain and uncertain information about DMs' preferences. In this sense, the FGM is an important generalization of the existing graph model for conflict resolution. One key contribution of this study is to extend the four basic graph model stability definitions to models with fuzzy preferences. Together, fuzzy Nash stability, fuzzy general metarationality, fuzzy symmetric metarationality, and fuzzy sequential stability provide a realistic description of human behavior under conflict in the face of uncertainty. A state is fuzzy stable for a DM if a move to any other state is not sufficiently likely to yield an outcome the DM prefers, where sufficiency is measured according to a fuzzy satisficing threshold that is characteristic of the DM. A fuzzy equilibrium, an outcome that is fuzzy stable for all DMs, therefore represents a possible resolution of the conflict. To demonstrate their applicability, the fuzzy stability definitions are applied to a generic two-DM sustainable development conflict, in which a developer plans to build or operate a project inspected by an environmental agency. This application identifies stable outcomes, and thus clarifies the necessary conditions for sustainability. The methodology is then applied to an actual dispute with more than two DMs concerning groundwater contamination that took place in Elmira, Ontario, Canada, again uncovering valuable strategic insights. To investigate how DMs with fuzzy preferences can cooperate in a strategic conflict, coalition fuzzy stability concepts are developed within FGM. In particular, coalition fuzzy Nash stability, coalition fuzzy general metarationality, coalition fuzzy symmetric metarationality, and coalition fuzzy sequential stability are defined, for both a coalition and a single DM. These concepts constitute a natural generalization of the corresponding non-cooperative fuzzy preference-based definitions for Nash stability, general metarationality, symmetric metarationality, and sequential stability, respectively. As a follow-up analysis of the non-cooperative fuzzy stability results and to demonstrate their applicability, the coalition fuzzy stability definitions are applied to the aforementioned Elmira groundwater contamination conflict. These new concepts can be conveniently utilized in the study of practical problems in order to gain strategic insights and to compare conclusions derived from both cooperative and non-cooperative stability notions. A fuzzy option prioritization technique is developed within the FGM so that uncertain preferences of DMs in strategic conflicts can be efficiently modeled as fuzzy preferences by using the fuzzy truth values they assign to preference statements about feasible states. The preference statements of a DM express desirable combinations of options or courses of action, and are listed in order of importance. A fuzzy truth value is a truth degree, expressed as a number between 0 and 1, capturing uncertainty in the truth of a preference statement at a feasible state. It is established that the output of a fuzzy preference formula, developed based on the fuzzy truth values of preference statements, is always a fuzzy preference relation. The fuzzy option prioritization methodology can also be employed when the truth values of preference statements at feasible states are formally based on Boolean logic, thereby generating a crisp preference over feasible states that is the same as would be found using the existing crisp option prioritization approach. Therefore, crisp option prioritization is a special case of fuzzy option prioritization. To demonstrate how this methodology can be used to represent fuzzy preferences in real-world problems, the new fuzzy option prioritization technique is applied to the Elmira aquifer contamination conflict. It is observed that the fuzzy preferences obtained by employing this technique are very close to those found using the rather complicated and tedious pairwise comparison approach.
3

Fuzzy Preferences in the Graph Model for Conflict Resolution

Bashar, Md. Abul January 2012 (has links)
A Fuzzy Preference Framework for the Graph Model for Conflict Resolution (FGM) is developed so that real-world conflicts in which decision makers (DMs) have uncertain preferences can be modeled and analyzed mathematically in order to gain strategic insights. The graph model methodology constitutes both a formal representation of a multiple participant-multiple objective decision problem and a set of analysis procedures that provide insights into them. Because crisp or definite preference is a special case of fuzzy preference, the new framework of the graph model can include---and integrate into the analysis---both certain and uncertain information about DMs' preferences. In this sense, the FGM is an important generalization of the existing graph model for conflict resolution. One key contribution of this study is to extend the four basic graph model stability definitions to models with fuzzy preferences. Together, fuzzy Nash stability, fuzzy general metarationality, fuzzy symmetric metarationality, and fuzzy sequential stability provide a realistic description of human behavior under conflict in the face of uncertainty. A state is fuzzy stable for a DM if a move to any other state is not sufficiently likely to yield an outcome the DM prefers, where sufficiency is measured according to a fuzzy satisficing threshold that is characteristic of the DM. A fuzzy equilibrium, an outcome that is fuzzy stable for all DMs, therefore represents a possible resolution of the conflict. To demonstrate their applicability, the fuzzy stability definitions are applied to a generic two-DM sustainable development conflict, in which a developer plans to build or operate a project inspected by an environmental agency. This application identifies stable outcomes, and thus clarifies the necessary conditions for sustainability. The methodology is then applied to an actual dispute with more than two DMs concerning groundwater contamination that took place in Elmira, Ontario, Canada, again uncovering valuable strategic insights. To investigate how DMs with fuzzy preferences can cooperate in a strategic conflict, coalition fuzzy stability concepts are developed within FGM. In particular, coalition fuzzy Nash stability, coalition fuzzy general metarationality, coalition fuzzy symmetric metarationality, and coalition fuzzy sequential stability are defined, for both a coalition and a single DM. These concepts constitute a natural generalization of the corresponding non-cooperative fuzzy preference-based definitions for Nash stability, general metarationality, symmetric metarationality, and sequential stability, respectively. As a follow-up analysis of the non-cooperative fuzzy stability results and to demonstrate their applicability, the coalition fuzzy stability definitions are applied to the aforementioned Elmira groundwater contamination conflict. These new concepts can be conveniently utilized in the study of practical problems in order to gain strategic insights and to compare conclusions derived from both cooperative and non-cooperative stability notions. A fuzzy option prioritization technique is developed within the FGM so that uncertain preferences of DMs in strategic conflicts can be efficiently modeled as fuzzy preferences by using the fuzzy truth values they assign to preference statements about feasible states. The preference statements of a DM express desirable combinations of options or courses of action, and are listed in order of importance. A fuzzy truth value is a truth degree, expressed as a number between 0 and 1, capturing uncertainty in the truth of a preference statement at a feasible state. It is established that the output of a fuzzy preference formula, developed based on the fuzzy truth values of preference statements, is always a fuzzy preference relation. The fuzzy option prioritization methodology can also be employed when the truth values of preference statements at feasible states are formally based on Boolean logic, thereby generating a crisp preference over feasible states that is the same as would be found using the existing crisp option prioritization approach. Therefore, crisp option prioritization is a special case of fuzzy option prioritization. To demonstrate how this methodology can be used to represent fuzzy preferences in real-world problems, the new fuzzy option prioritization technique is applied to the Elmira aquifer contamination conflict. It is observed that the fuzzy preferences obtained by employing this technique are very close to those found using the rather complicated and tedious pairwise comparison approach.

Page generated in 0.082 seconds