• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Generalized Measures Of Information With Maximum And Minimum Entropy Prescriptions

Dukkipati, Ambedkar 03 1900 (has links)
Kullback-Leibler relative-entropy or KL-entropy of P with respect to R defined as ∫xlnddPRdP , where P and R are probability measures on a measurable space (X, ), plays a basic role in the definitions of classical information measures. It overcomes a shortcoming of Shannon entropy – discrete case definition of which cannot be extended to nondiscrete case naturally. Further, entropy and other classical information measures can be expressed in terms of KL-entropy and hence properties of their measure-theoretic analogs will follow from those of measure-theoretic KL-entropy. An important theorem in this respect is the Gelfand-Yaglom-Perez (GYP) Theorem which equips KL-entropy with a fundamental definition and can be stated as: measure-theoretic KL-entropy equals the supremum of KL-entropies over all measurable partitions of X . In this thesis we provide the measure-theoretic formulations for ‘generalized’ information measures, and state and prove the corresponding GYP-theorem – the ‘generalizations’ being in the sense of R ´enyi and nonextensive, both of which are explained below. Kolmogorov-Nagumo average or quasilinear mean of a vector x = (x1, . . . , xn) with respect to a pmf p= (p1, . . . , pn)is defined ashxiψ=ψ−1nk=1pkψ(xk), whereψis an arbitrarycontinuous and strictly monotone function. Replacing linear averaging in Shannon entropy with Kolmogorov-Nagumo averages (KN-averages) and further imposing the additivity constraint – a characteristic property of underlying information associated with single event, which is logarithmic – leads to the definition of α-entropy or R ´enyi entropy. This is the first formal well-known generalization of Shannon entropy. Using this recipe of R´enyi’s generalization, one can prepare only two information measures: Shannon and R´enyi entropy. Indeed, using this formalism R´enyi characterized these additive entropies in terms of axioms of KN-averages. On the other hand, if one generalizes the information of a single event in the definition of Shannon entropy, by replacing the logarithm with the so called q-logarithm, which is defined as lnqx =x1− 1 −1 −q , one gets what is known as Tsallis entropy. Tsallis entropy is also a generalization of Shannon entropy but it does not satisfy the additivity property. Instead, it satisfies pseudo-additivity of the form x ⊕qy = x + y + (1 − q)xy, and hence it is also known as nonextensive entropy. One can apply R´enyi’s recipe in the nonextensive case by replacing the linear averaging in Tsallis entropy with KN-averages and thereby imposing the constraint of pseudo-additivity. A natural question that arises is what are the various pseudo-additive information measures that can be prepared with this recipe? We prove that Tsallis entropy is the only one. Here, we mention that one of the important characteristics of this generalized entropy is that while canonical distributions resulting from ‘maximization’ of Shannon entropy are exponential in nature, in the Tsallis case they result in power-law distributions. The concept of maximum entropy (ME), originally from physics, has been promoted to a general principle of inference primarily by the works of Jaynes and (later on) Kullback. This connects information theory and statistical mechanics via the principle: the states of thermodynamic equi- librium are states of maximum entropy, and further connects to statistical inference via select the probability distribution that maximizes the entropy. The two fundamental principles related to the concept of maximum entropy are Jaynes maximum entropy principle, which involves maximizing Shannon entropy and the Kullback minimum entropy principle that involves minimizing relative-entropy, with respect to appropriate moment constraints. Though relative-entropy is not a metric, in cases involving distributions resulting from relative-entropy minimization, one can bring forth certain geometrical formulations. These are reminiscent of squared Euclidean distance and satisfy an analogue of the Pythagoras’ theorem. This property is referred to as Pythagoras’ theorem of relative-entropy minimization or triangle equality and plays a fundamental role in geometrical approaches to statistical estimation theory like information geometry. In this thesis we state and prove the equivalent of Pythagoras’ theorem in the nonextensive formalism. For this purpose we study relative-entropy minimization in detail and present some results. Finally, we demonstrate the use of power-law distributions, resulting from ME-rescriptions of Tsallis entropy, in evolutionary algorithms. This work is motivated by the recently proposed generalized simulated annealing algorithm based on Tsallis statistics. To sum up, in light of their well-known axiomatic and operational justifications, this thesis establishes some results pertaining to the mathematical significance of generalized measures of information. We believe that these results represent an important contribution towards the ongoing research on understanding the phenomina of information. (For formulas pl see the original document) ii
2

Minimization Problems Based On A Parametric Family Of Relative Entropies

Ashok Kumar, M 05 1900 (has links) (PDF)
We study minimization problems with respect to a one-parameter family of generalized relative entropies. These relative entropies, which we call relative -entropies (denoted I (P; Q)), arise as redundancies under mismatched compression when cumulants of compression lengths are considered instead of expected compression lengths. These parametric relative entropies are a generalization of the usual relative entropy (Kullback-Leibler divergence). Just like relative entropy, these relative -entropies behave like squared Euclidean distance and satisfy the Pythagorean property. We explore the geometry underlying various statistical models and its relevance to information theory and to robust statistics. The thesis consists of three parts. In the first part, we study minimization of I (P; Q) as the first argument varies over a convex set E of probability distributions. We show the existence of a unique minimizer when the set E is closed in an appropriate topology. We then study minimization of I on a particular convex set, a linear family, which is one that arises from linear statistical constraints. This minimization problem generalizes the maximum Renyi or Tsallis entropy principle of statistical physics. The structure of the minimizing probability distribution naturally suggests a statistical model of power-law probability distributions, which we call an -power-law family. Such a family is analogous to the exponential family that arises when relative entropy is minimized subject to the same linear statistical constraints. In the second part, we study minimization of I (P; Q) over the second argument. This minimization is generally on parametric families such as the exponential family or the - power-law family, and is of interest in robust statistics ( > 1) and in constrained compression settings ( < 1). In the third part, we show an orthogonality relationship between the -power-law family and an associated linear family. As a consequence of this, the minimization of I (P; ), when the second argument comes from an -power-law family, can be shown to be equivalent to a minimization of I ( ; R), for a suitable R, where the first argument comes from a linear family. The latter turns out to be a simpler problem of minimization of a quasi convex objective function subject to linear constraints. Standard techniques are available to solve such problems, for example, via a sequence of convex feasibility problems, or via a sequence of such problems but on simpler single-constraint linear families.

Page generated in 0.1108 seconds