Spelling suggestions: "subject:"relativistic 1mprocesses"" "subject:"relativistic byprocesses""
1 |
Testing General Relativity in the Strong-Field Regime with Observations of Black Holes in the Electromagnetic SpectrumJohannsen, Tim January 2012 (has links)
General relativity has been tested by many experiments, which, however, almost exclusively probe weak spacetime curvatures. In this thesis, I create two frameworks for testing general relativity in the strong-field regime with observations of black holes in the electromagnetic spectrum using current or near-future instruments. In the first part, I design tests of the no-hair theorem, which uniquely characterizes the nature of black holes in terms of their masses and spins in general relativity and which states that these compact objects are described by the Kerr metric. I investigate a quasi-Kerr metric and construct a Kerr-like spacetime, both of which contain an independent parameter in addition to mass and spin. If the no-hair theorem is correct, then any deviation from the Kerr metric has to be zero. I show that already moderate changes of the deviation parameters in either metric lead to significant modifications of the observed signals. First, I apply this framework to the imaging of supermassive black holes using very-long baseline interferometry. I show that the shadow of a black hole as well as the shape of a bright and narrow ring surrounding the shadow depend uniquely on its mass, spin, inclination, and the deviation parameter. I argue that the no-hair theorem can be tested with observations of the supermassive black hole Sgr A*. Second, I investigate the potential of quasi-periodic variability observed in both galactic black holes and active galactic nuclei to test the no-hair theorem in two different scenarios. Third, I show that the profiles of relativistically broadened iron lines emitted from the accretion disks of black holes imprint the signatures of deviations from the Kerr metric. In the second part, I devise a method to test the predicted evaporation of black holes in the Randall-Sundrum model of string theory-inspired braneworld gravity through the orbital evolution of black-hole X-ray binaries and obtain constraints on the size of the extra dimension from A0620-00 and XTE J1118+480. I predict the first detection of orbital evolution in a black-hole binary.
|
2 |
Order & disorder: a study of the flaring properties and polarized emission of blazarsMacDonald, Nicholas Roy 09 June 2017 (has links)
Blazars are the most luminous persistent and enigmatic objects in the sky. They constitute a sub-class of active galactic nuclei (AGN) whose relativistic plasma jets are closely aligned to our line of sight. By monitoring the polarized emission of these jets and subsequently modeling flares in the high-energy emission, we are able to gain insight into the parsec-scale physics of the jets close to the central engines. My dissertation develops and augments several theoretical models of high-energy blazar emission.
The vast majority of gamma-ray flares detected in blazars are highly correlated with flares detected at longer wavelengths; however, a small subset of these gamma-ray flares appear to occur in isolation. These "orphan" gamma-ray flares challenge current models of blazar variability. I have developed a theoretical model of blazar emission to explain the origin of these orphan flares. This model invokes the presence of a sheath of plasma enshrouding the relativistic spine of the jet. The sheath supplies photons that are inverse-Compton scattered up to high energies by relativistic electrons contained within the jet, producing an orphan flare. This model is successfully applied to a number of such gamma-ray flares. In addition, I present stacked radio images that highlight the presence of jet sheaths in my sample of blazars.
Circular polarization (CP) has been detected in a number of blazar jets. CP is very sensitive to the underlying plasma content of the jet. A. Marscher has developed the Turbulent Extreme Multi-Zone (TEMZ) model for blazar emission consisting of thousands of individual cells of plasma that propagate relativistically across a standing shock in the jet. The turbulent nature of the magnetic field within the TEMZ grid naturally creates a birefringent environment in which CP emission can be produced. In order to investigate whether the TEMZ model can indeed produce CP, I have developed a numerical algorithm to solve the full Stokes equations of polarized radiative transfer. I apply this algorithm to ray tracing through the TEMZ model. I am able to demonstrate that TEMZ can reproduce CP at the levels present in blazars.
|
3 |
A Reverse Shock and Unusual Radio Properties in GRB 160625BAlexander, K. D., Laskar, T., Berger, E., Guidorzi, C., Dichiara, S., Fong, W., Gomboc, A., Kobayashi, S., Kopac, D., Mundell, C. G., Tanvir, N. R., Williams, P. K. G. 12 October 2017 (has links)
We present multi-wavelength observations and modeling of the exceptionally bright long gamma-ray burst GRB 160625B. The optical and X-ray data are well fit by synchrotron emission from a collimated blastwave with an opening angle of theta(j) approximate to 3 degrees.6 and kinetic energy of E-K approximate to 2 x 10(51) erg, propagating into a low-density (n approximate to 5 x 10(-5) cm(-3)) medium with a uniform profile. The forward shock is sub-dominant in the radio band; instead, the radio emission is dominated by two additional components. The first component is consistent with emission from a reverse shock, indicating an initial Lorentz factor of Gamma(0) greater than or similar to 100 and an ejecta magnetization of R-B approximate to 1-100. The second component exhibits peculiar spectral and temporal evolution and is most likely the result of scattering of the radio emission by the turbulent Milky Way interstellar medium (ISM). Such scattering is expected in any sufficiently compact extragalactic source and has been seen in GRBs before, but the large amplitude and long duration of the variability seen here are qualitatively more similar to extreme scattering events previously observed in quasars, rather than normal interstellar scintillation effects. High-cadence, broadband radio observations of future GRBs are needed to fully characterize such effects, which can sensitively probe the properties of the ISM and must be taken into account before variability intrinsic to the GRB can be interpreted correctly.
|
4 |
Time Dependent Leptonic and Lepto-Hadronic Modeling of Blazar EmissionDIltz, Christopher S. 08 July 2016 (has links)
No description available.
|
5 |
Reconnexion magnétique non-collisionelle dans les plasmas relativistes et simulations particle-in-cell / Collisionless magnetic reconnection in relativistic plasmas with particle-in-cell simulationsMelzani, Mickaël 05 November 2014 (has links)
L'objectif de cette thèse est l'étude de la reconnexion magnétique dans les plasmas non-collisionels et relativistes. De tels plasmas sont présents dans divers objets astrophysiques (MQs, AGNs, GRBs...), où la reconnexion pourrait expliquer la production de particules et de radiation de haute énergie, un chauffage, ou des jets. Une compréhension fondamentale de la reconnexion n'est cependant toujours pas acquise, en particulier dans les plasmas relativistes ion-électron. Nous présentons d'abord les bases de la reconnexion magnétique. Nous démontrons des résultats particuliers à la physique des plasmas relativistes, concernant par exemple la distribution de Maxwell-Jüttner. Ensuite, nous réalisons une étude détaillée de l'outil numérique utilisé : les simulations particle-in-cell (PIC). Le fait que le plasma réel contienne beaucoup plus de particules que le plasma PIC a des conséquences importantes (collisionalité, relaxation, bruit) que nous décrivons. Enfin, nous étudions la reconnexion magnétique dans les plasmas ion-électron et relativistes à l'aide de simulations PIC. Nous soulignons des points spécifiques : loi d'Ohm (l'inertie de bulk dominante), zone de diffusion, taux de reconnexion (et sa normalisation relativiste). Les ions et les électrons produisent des lois de puissance, avec un index qui dépend de la vitesse d'Alfvén et de la magnétisation, et qui peut être plus dur que dans le cas des chocs non-collisionels. De plus, les ions peuvent avoir plus ou moins d'énergie que les électrons selon la valeur du champ guide. Ces résultats fournissent une base solide à des modèles d'objets astrophysiques qui, jusque là, supposaient a priori ces résultats. / The purpose of this thesis is to study magnetic reconnection in collisionless and relativistic plasmas. Such plasmas can be encountered in various astrophysical objects (microquasars, AGNs, GRBs...), where reconnection could explain high-energy particle and photon production, plasma heating, or transient large-scale outflows. However, a first principle understanding of reconnection is still lacking, especially in relativistic ion-electron plasmas. We first present the basis of reconnection physics. We derive results relevant to relativistic plasma physics, including properties of the Maxwell-Jüttner distribution. Then, we provide a detailed study of our numerical tool, particle-in-cell simulations (PIC). The fact that the real plasma contains far less particles than the PIC plasma has important consequences concerning relaxation times or noise, that we describe. Finally, we study relativistic reconnection in ion-electron plasmas with PIC simulations. We stress outstanding properties: Ohm's law (dominated by bulk inertia), structure of the diffusion zone, energy content of the outflows (thermally dominated), reconnection rate (and its relativistic normalization). Ions and electrons produce power law distributions, with indexes that depend on the inflow Alfvén speed and on the magnetization of the corresponding species. They can be harder than those produced by collisionless shocks. Also, ions can get more or less energy than the electrons, depending on the guide field strength. These results provide a solid ground for astrophysical models that, up to now, assumed with no prior justification the existence of such distributions or of such ion/electron energy repartition.
|
6 |
Les cascades électromagnétiques cosmologiques comme sondes du milieu intergalactique / Cosmological electromagnetic cascades as probe of the UniverseFitoussi, Thomas 13 October 2017 (has links)
Cette thèse vise à étudier le phénomène dit de " cascades électromagnétiques cosmologiques ". Ces cascades sont typiquement générées dans le milieu intergalactique par l'absorption de rayons gamma sur les photons du fond optique / UV et par la production de paires électron / positron associés. Ces leptons eux-mêmes interagissent avec les photons du fond diffus cosmologique via diffusion inverse Compton pour produire de nouveaux rayons gamma qui eux même peuvent s'annihiler, générant à partir d'un unique photon primaire toute une gerbe de photons et de particules secondaires. D'un point de vue observationnel, le développement de cette cascade introduit trois effets : une déformation du spectre à haute énergie, un retard temporel dans l'arrivée des rayons gamma et une extension de la taille apparente de la source. Les cascades électromagnétiques cosmologiques ont commencé à être étudiées dans les années soixante. Mais ce n'est qu'à partir des années 2010 avec l'arrivée du satellite Fermi (entre autres) et des observations dans la bande au GeV et au TeV que la discipline a explosé. Le phénomène est particulièrement important. D'une part il altère le spectre observé des sources rendant difficile la compréhension de la physique de ces dernières. D'autre part les cascades se développant dans le milieu extragalactique, elles sont très sensibles à la composition de ce dernier (fond diffus de photons, champ magnétique). Or ce milieu étant très ténu, il est difficile à étudier. Les cascades deviennent alors une formidable sonde pour accéder à sa compréhension et pouvoir en comprendre l'origine qui remonte au commencement de l'Univers. Pourtant les cascades cosmologiques sont un phénomène complexe faisant intervenir des interactions difficiles à modéliser (sections efficaces complexes) et le transport de particules dans un Univers en expansion (cosmologie). Face à cette complexité les expressions analytiques sont vite limitées et le passage au numérique devient inévitable. Dans le cadre de cette thèse un code de simulation Monte Carlo a donc été développé visant à reproduire aussi précisément que possible le phénomène des cascades. Ce code a été testé et validé en le confrontant aux expressions analytiques. Grâce à ce code, le rôle des différents paramètres physiques impactant le développement de la cascade a été étudié de manière systématique. Cette étude a permis de mieux comprendre la physique du phénomène. En particulier, l'impact des propriétés du milieu extragalactique (fond diffus extragalactique, champ magnétique extragalactique) sur les observables a été mis en évidence. Finalement, une seconde étude a été menée pour mesurer la contribution des cascades au fond gamma extragalactique. Des travaux récents montrent qu'une grande partie de l'émission diffuse à très haute énergie provient de sources ponctuelles non résolues (blazars en particulier). Ces sources gamma (résolues et non résolues) doivent en principe initier des cascades qui peuvent contribuer au fond diffus. En partant d'une modélisation de l'émission des blazars à différents redshifts, l'absorption et la contribution des cascades ont alors été calculées à l'aide du code Monte Carlo. Les résultats montrent que la contribution des cascades au fond gamma extragalactique pourrait violer les limites Fermi mais l'excès doit encore être confirmé. / This thesis aims at studying "cosmological electromagnetic cascades". These cascades are initiated by the absorption of very high energy gamma-rays through gamma-gamma annihilation with optical / UV background photons of the intergalactic medium. In this interaction, electron/positron pairs are produced. The newly created leptons interact with photons of the Cosmological Microwave Background producing new gamma-rays through inverse Compton scattering which can also annihilate producing a cascade of secondary particles from a single primary photon. Observationally, the development of this cascade has three effects : the observed high energy spectrum is altered, observed photons arrive with a time delay with respect to primary photons and the source appears extended. Cosmological electromagnetic cascades start to being studied in the early sixties. But it is during the 2010's with the Fermi satellite and GeV to TeV observations that the field has really started to being explored. In the fast evolving backgound of gamma-ray astronomy, understanding the cascade physics has become a crucial stake. First the observed spectrum from a distant source is altered, which directly affects the modelling of high energy sources. Secondly, the cascades develop in the extragalactic medium and are very sensitive to its composition (background light, magnetic field). This medium is hard to study because it is extremely thin. Hence the cosmological cascades are a formidable probe to access its comprehension and its origin coming from the very beginning of our Universe. Yet the cosmological cascades are a complex phenomenon which involves complicated interactions (complex cross sections) and transport of particles in an expanding Universe. Analytical expressions are rapidly limited and numerical computations are required. In this thesis a Monte Carlo simulation code has been developed aiming at reproducing the cosmological cascades. This code has been tested and validated against analytical expressions. With the simulation code, a systematic study of the parameters impacting the development of the cascade has been led. This study allows a better understanding of the cascade physics. Especially, the impact of the intergalactic medium properties (extragalactic background light, extragalactic magnetic field) on the observables has been highlighted. Finally, a second study has been done to measure the contribution of cascades to the extragalactic gamma ray background. Recent works show that a great part of the diffuse emission at very high energy is explained by unresolved sources (blazars in particular). These gamma sources (resolved and unresolved) must in principle initiate cosmological cascades which can also contribute to the extragalactic gamma ray background. Starting from a modeling of the blazars at different redshifts, absorption and contribution of the cascades have been estimated with the simulation code. The results show that the contribution of the cascades might violate the Fermi limits but the excess must be confirmed.
|
Page generated in 0.0959 seconds