• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 106
  • 35
  • 8
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 189
  • 189
  • 101
  • 41
  • 40
  • 37
  • 34
  • 31
  • 29
  • 28
  • 25
  • 25
  • 24
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Universos D-dimensionais e soluções de cordas negras / D-dimensional universes and black string solutions.

Rodrigo Dal Bosco Fontana 03 August 2006 (has links)
Durante os últimos 90 anos temos visto o grande esplendor que a teoria da relatividade geral de Einstein alcançou em suas diversas previsões. Esta dissertação é um estudo a respeito desta teoria e suas extrapolações. Falaremos de início acerca da primeira solução das equações de Einstein para buracos negros obtida por Karl Schwarzschild em 1916: o buraco negro esfericamente simétrico e sem carga. Trataremos das possíveis órbitas neste tipo de solução bem como de perturbações gravitacionais e escalares. Ainda utilizando a solução de Schwarzschild, adentraremos os tópicos desenvolvidos recentemente em um tratamento semi-clássico da relatividade: a termodinâmica dos buracos negros. Posteriormente estudaremos as novas teorias com base na relatividade geral, que resolvem o problema da hierarquia buscando por dimensões extras em nosso Universo. Em tal contexto analisamos por exemplo como se comportam os buracos negros nestes Universos com mais do que 4 dimensões. Porém, estudamos perturbações gravitacionais em uma corda negra chegando a averiguar a presença de uma instabilidade para modos com comprimento de onda maiores do que o horizonte da corda (em uma aproximação linear), e demonstramos que em uma das possíveis soluções do problema da Hierarquia (Universos de Randall Sundrum) não existem atalhos gravitacionais mesmo para branas não planas (extrapolação dos Universos de Randall-Sundrum). / Over the last 90 years Einstein`s Theory of General Relativity has had a tremendous success in all its predictions. This dissertation is concerned with the study of this theory and its extrapolations. We begin with the first solution of the Einstein equations for black holes obtained by Karl Schwarzschild at 1916: the spherically symmetric black hole without charge, obtaining the orbits and the scalar and gravitational perturbations around the metric. We also consider the recent developments in black hole thermodynamics via a semiclassical approach to the theory. Subsequently, we study the new theories based on general relativity extrapolations, which solve the hierarchy problem proposing extra dimensions in our Universe. In this context we analyze for example the behavior of black holes in Universes with more than 4 dimensions. Finally, we study the gravitational perturbations in a black string showing the presence of unstable modes with wave length bigger than the black string horizon. We also show that in one of the possible Universes which solve the hierarchy problem there are no gravitational shortcuts even for non-at branes (an extrapolation of Randall-Sundrum Universes).
22

Probing general relativity through simulations of the Shapiro time delay of light in binary pulsar systems

Lodewijks, Marten Barend 05 June 2008 (has links)
The theory of General Relativity has been in existence for 90 years and has stood up to all tests it has been subjected to in that time. The PPN parameter is a measure of the accuracy of theories of gravity and assumes different values in different theories. By measuring the Shapiro time delay of light it is possible to constrain and thereby constrain gravitational theories. This Shapiro time delay can be measured in our solar system but it is only in the vicinity of extremely compact objects such as pulsars and black holes that it can be tested under the immense gravitational fields that can only be found there. A pulsar in a binary orbit about another compact object is the ideal system in which to test this effect. In this work we have gone from Kepler’s laws of simple planetary motion to deriving the equations that explain binary orbits to incorporating General Relativity into these equations in order to obtain the equations for relativistic particle orbits. We then evolved this theory even further so as to be able to explain relativistic light ray orbits and then used this knowledge to model the Shapiro delay in a binary system. With a working model it became possible to simulate the Shapiro delay in a wide range of possible systems and then to use these simulations to say something about what type of system should be focussed on in future so as to measure the Shapiro delay and thereby constrain more tightly the parameter / Dr. C.A. Engelbrecht Dr. F.A.M. Frescura
23

Isolated systems in general relativity : the gravitational-electrostatic two-body balance problem and the gravitational geon

Perry, George Philip 02 August 2017 (has links)
This dissertation examines two fundamentally different types of isolated systems in general relativity. In part 1, an exact solution of the Einstein-Maxwell equations representing the exterior field of two arbitrary charged essentially spherically symmetric (Reissner-Nordström) bodies in equilibrium is studied. Approximate solutions representing the gravitational- electrostatic balance of two arbitrary point sources in general relativity have led to contradictory arguments in the literature with respect to the condition of balance. Up to the present time, the only known exact solutions which can be interpreted as the nonlinear superposition of two Reissner-Nordström bodies without an intervening strut has been for critically charged masses, [special characters omitted]. In this dissertation . the invariant physical charge for each source is found by direct integration of Maxwell's equations. The physical mass for each source is invariantly defined in a manner similar to which the charge was found. It is shown that balance without tension or strut can occur for non-critically charged bodies. It is demonstrated that other authors have not identified the correct physical parameters for the masses and charges of the sources. Examination of the fundamental parameters of the space-time suggests a refinement of the nomenclature used to describe the physical properties is necessary. Such a refinement is introduced. Further properties of the solution, including the multipole structure and comparison with other parameterizations, are examined. Part 2 investigates the viability of constructing gravitational and electromagnetic geons: zero-rest-mass field concentrations, consisting of gravitational or electromagnetic waves, held together for long periods of time by their gravitational attraction. In contrast to an exact solution, the method studied involves solving the Einstein or Einstein-Maxwell equations for perturbations on a static background metric in a self-consistent manner. The Brill-Hartle gravitational geon construct as a spherical shell of small amplitude, high-frequency gravitational waves is reviewed and critically analyzed. The spherical shell in the proposed Brill-Hartle geon cannot be regarded as an adequate geon construct because it does not meet the regularity conditions required for a non-singular source. An attempt is made to build a non- singular solution to meet the requirements of a gravitational geon. Construction of a geon requires gravitational waves of high-frequency and the field equations are decomposed accordingly. A geon must also possess the property of quasi-stability on a time-scale longer than the period of the comprising waves. It is found that only unstable equilibrium solutions to the gravitational and electromagnetic geon problem exist. A perturbation analysis to test the requirement of quasi-stability resulted in a contradiction. Thus it could not be concluded that either electromagnetic or gravitational geons meet all the requirements for existence. The broader implications of the result are discussed with particular reference to the problem of with particular reference to the problem of gravitational energy. / Graduate
24

Some properties of a cosmological model containing anti-matter

Matz, Detlef January 1959 (has links)
The chief aim of this work is to investigate cosmological consequences of a hypothesis put forward by Morrison and Gold in 1956. These authors postulate the existence of equal amounts of matter and antimatter in our universe. Abandoning the principle of equivalence, they attribute negative gravitational mass to anti-nucleons. The result is a drastic alteration in the field equation for the gravitational potential. In the first three chapters Newtonian Cosmology is developed from basic principles. The equations describing a universe consisting of matter are set up and solved. In chapter IV the hypothesis of Morrison and Gold is introduced, and the resulting model for the universe is compared with models obtained in chapter III. It is concluded that within the framework of the model considered, the hypothesis of Morrison and Gold is incompatible with the observational evidence, because it leads to an age of the universe of between 1.3 and 1.9 billion years, which is less than the age derived from other geological and astrophysical data. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
25

State space relativity : an analysis of relativity from the Hamiltonian point of view

Low, Stephen G. January 1982 (has links)
No description available.
26

The ADM approach to numerical relativity with an implementation in spherical symmetry.

Wright, Warren Peter 15 August 2012 (has links)
M.Sc. / General Relativity, as defined by Einstein's equations, defines the geometry of the universe. In Numerical Relativity, Einstein's equations are solved with the aid of numerical methods and computers. This dissertation discusses the ADM formulation of Numerical Relativity via a Cauchy approach. (ADM refers to the initials of the discoverers of this method: Arnowitt, Deser and Misner.) When working within relativistic equations, a computer algebra code is very useful and such a code is described in this dissertation. In order to illustrate computational cost saving techniques, only spherically symmetric space-times are considered. Furthermore, we present and test a numerical code that implements the standard ADM approach in order to accurately evolve a single black hole space-time. Finally, we discuss the implementation of a maximal slicing gauge condition that refines the numerical code by giving it singularity avoidance properties.
27

On the limiting behaviors and positivity of quasi-local mass. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Kwong, Kwok Kun. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 66-70) and index. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
28

An investigation of student understanding of Galilean relativity /

Boudreaux, Andrew, January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (p. 425-428).
29

Three new high precision tests of relativity and Mach's principle

Bogatin, Eric Lee January 1980 (has links)
No description available.
30

Extensions of Weyl metrics.

Morgan, Francis Hamilton. January 1977 (has links) (PDF)
Thesis (M.Sc.) -- University of Adelaide, Dept. of Mathematical Physics, 1977.

Page generated in 0.0778 seconds