• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 63
  • 63
  • 17
  • 15
  • 11
  • 11
  • 9
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An exploration of the role of relaxometry in quantitative magnetic resonance imaging

Doran, Simon John January 1993 (has links)
No description available.
2

Non-invasive Monitoring of Degradation of Poly (lactide-co-glycolide) Hollow Fiber Channel for Recovery of Spinal Cord Injury Using Magnetic Resonance Imaging

Shahabi, Sagedeh Sadat 07 December 2012 (has links)
Spinal cord injury (SCI) leads to axonal damage and limits the ability of the brain to communicate with the rest of the body. Several bioengineered approaches have been developed for the recovery of SCI. Among these techniques, degradable guidance tubes have shown promising results. However, design of nerve guide tubes requires several design considerations and has been a significant challenge. To assess the efficacy of a prototypical implanted nerve guide tubes, it is essential to perform continuous monitoring. In this respect, magnetic resonance imaging (MRI) is one of the most reliable imaging techniques as it offers the ability to achieve extraordinary high temporal and spatial resolution in addition to its non-invasive features. In spite of the excellent image quality of non-enhanced MRI various types of contrast agents have been developed to further enhance the contrast and allow improved visualization. The MRI contrast agents principally work by shortening the T1 or T2 relaxation times of protons located nearby. The presented study was intended to evaluate the in vitro degradation of the nerve guide tubes made of poly (lactic-co-glycolic acid) (PLGA). PLGA tubes incorporated with different concentrations of superparamagnetic iron oxide (SPIO) were scanned by MRI 3T on weekly basis during the degradation period. Spin-echo (SE) sequence with various echo times (TEs) ranged from 13.3 to 314.4 msec was applied. T2 mapping was computed using in-house algorithm developed in Matlab. Least square fit was used to find the slope of the decay curve by plotting log intensity on the y-axis and echo time on the x-axis. The average T2 values were calculated. Mass loss and water uptake of the degrading tubes were also measured weekly. Moreover, the micro-structural changes of the tubes were investigated using the scanning electron microscope (SEM). The MRI results showed that the concentration of SPIO affects the signal intensity of the T2 weighted images reducing the T2 relaxation time value. Accordingly, a linear correlation between SPIO concentration and T2 relaxation time was found. At the beginning of degradation, the SPIO nanoparticles were trapped within the polymeric network. Therefore, water penetration was the predominant factor affecting the T2 relaxation times. At week 5, a significant mass loss was observed. From this stage onwards, the trapped SPIO were released from the polymeric network increasing T2 relaxation time dramatically. According to SEM images, the size of the pores in PLGA guide tubes was increased with the degradation. Approaching the end of degradation, shrinkage of the tubes was observed and the degraded nerve guide tubes were shown to be collapsed. Similar shape variation was observed in T2 weighted MR images. In summary, this study provided an approach to non-invasive monitoring of degradation behavior of nerve guide tubes using contrast enhancement. The developed technique is of great importance since it opened an insight to non-invasive monitoring of tissue engineered scaffolds for in vivo studies.
3

Non-invasive Monitoring of Degradation of Poly (lactide-co-glycolide) Hollow Fiber Channel for Recovery of Spinal Cord Injury Using Magnetic Resonance Imaging

Shahabi, Sagedeh Sadat 07 December 2012 (has links)
Spinal cord injury (SCI) leads to axonal damage and limits the ability of the brain to communicate with the rest of the body. Several bioengineered approaches have been developed for the recovery of SCI. Among these techniques, degradable guidance tubes have shown promising results. However, design of nerve guide tubes requires several design considerations and has been a significant challenge. To assess the efficacy of a prototypical implanted nerve guide tubes, it is essential to perform continuous monitoring. In this respect, magnetic resonance imaging (MRI) is one of the most reliable imaging techniques as it offers the ability to achieve extraordinary high temporal and spatial resolution in addition to its non-invasive features. In spite of the excellent image quality of non-enhanced MRI various types of contrast agents have been developed to further enhance the contrast and allow improved visualization. The MRI contrast agents principally work by shortening the T1 or T2 relaxation times of protons located nearby. The presented study was intended to evaluate the in vitro degradation of the nerve guide tubes made of poly (lactic-co-glycolic acid) (PLGA). PLGA tubes incorporated with different concentrations of superparamagnetic iron oxide (SPIO) were scanned by MRI 3T on weekly basis during the degradation period. Spin-echo (SE) sequence with various echo times (TEs) ranged from 13.3 to 314.4 msec was applied. T2 mapping was computed using in-house algorithm developed in Matlab. Least square fit was used to find the slope of the decay curve by plotting log intensity on the y-axis and echo time on the x-axis. The average T2 values were calculated. Mass loss and water uptake of the degrading tubes were also measured weekly. Moreover, the micro-structural changes of the tubes were investigated using the scanning electron microscope (SEM). The MRI results showed that the concentration of SPIO affects the signal intensity of the T2 weighted images reducing the T2 relaxation time value. Accordingly, a linear correlation between SPIO concentration and T2 relaxation time was found. At the beginning of degradation, the SPIO nanoparticles were trapped within the polymeric network. Therefore, water penetration was the predominant factor affecting the T2 relaxation times. At week 5, a significant mass loss was observed. From this stage onwards, the trapped SPIO were released from the polymeric network increasing T2 relaxation time dramatically. According to SEM images, the size of the pores in PLGA guide tubes was increased with the degradation. Approaching the end of degradation, shrinkage of the tubes was observed and the degraded nerve guide tubes were shown to be collapsed. Similar shape variation was observed in T2 weighted MR images. In summary, this study provided an approach to non-invasive monitoring of degradation behavior of nerve guide tubes using contrast enhancement. The developed technique is of great importance since it opened an insight to non-invasive monitoring of tissue engineered scaffolds for in vivo studies.
4

Non-invasive Monitoring of Degradation of Poly (lactide-co-glycolide) Hollow Fiber Channel for Recovery of Spinal Cord Injury Using Magnetic Resonance Imaging

Shahabi, Sagedeh Sadat January 2012 (has links)
Spinal cord injury (SCI) leads to axonal damage and limits the ability of the brain to communicate with the rest of the body. Several bioengineered approaches have been developed for the recovery of SCI. Among these techniques, degradable guidance tubes have shown promising results. However, design of nerve guide tubes requires several design considerations and has been a significant challenge. To assess the efficacy of a prototypical implanted nerve guide tubes, it is essential to perform continuous monitoring. In this respect, magnetic resonance imaging (MRI) is one of the most reliable imaging techniques as it offers the ability to achieve extraordinary high temporal and spatial resolution in addition to its non-invasive features. In spite of the excellent image quality of non-enhanced MRI various types of contrast agents have been developed to further enhance the contrast and allow improved visualization. The MRI contrast agents principally work by shortening the T1 or T2 relaxation times of protons located nearby. The presented study was intended to evaluate the in vitro degradation of the nerve guide tubes made of poly (lactic-co-glycolic acid) (PLGA). PLGA tubes incorporated with different concentrations of superparamagnetic iron oxide (SPIO) were scanned by MRI 3T on weekly basis during the degradation period. Spin-echo (SE) sequence with various echo times (TEs) ranged from 13.3 to 314.4 msec was applied. T2 mapping was computed using in-house algorithm developed in Matlab. Least square fit was used to find the slope of the decay curve by plotting log intensity on the y-axis and echo time on the x-axis. The average T2 values were calculated. Mass loss and water uptake of the degrading tubes were also measured weekly. Moreover, the micro-structural changes of the tubes were investigated using the scanning electron microscope (SEM). The MRI results showed that the concentration of SPIO affects the signal intensity of the T2 weighted images reducing the T2 relaxation time value. Accordingly, a linear correlation between SPIO concentration and T2 relaxation time was found. At the beginning of degradation, the SPIO nanoparticles were trapped within the polymeric network. Therefore, water penetration was the predominant factor affecting the T2 relaxation times. At week 5, a significant mass loss was observed. From this stage onwards, the trapped SPIO were released from the polymeric network increasing T2 relaxation time dramatically. According to SEM images, the size of the pores in PLGA guide tubes was increased with the degradation. Approaching the end of degradation, shrinkage of the tubes was observed and the degraded nerve guide tubes were shown to be collapsed. Similar shape variation was observed in T2 weighted MR images. In summary, this study provided an approach to non-invasive monitoring of degradation behavior of nerve guide tubes using contrast enhancement. The developed technique is of great importance since it opened an insight to non-invasive monitoring of tissue engineered scaffolds for in vivo studies.
5

Assessment of placental and fetal oxygenation in normal and abnormal pregnancy using magnetic resonance imaging

Huen, Isaac Kwong-Ping January 2014 (has links)
Fetal growth restriction (FGR) is a common pregnancy complication resulting in increased neonatal mortality and morbidity. The aetiology of fetal growth restriction is not fully understood, but abnormalities in placental development are, leading to abnormalities in placental structure which are thought to affect supply of oxygen to the fetus. The source of fetal hypoxia is unknown due to the difficulty in obtaining oxygenation data in the context of pregnancy using existing techniques. There is also an absence of data relating to oxygenation in FGR pregnancies. Oxygen-Enhanced MRI (OE-MRI) and Blood Oxygen-Level Dependent (BOLD) MRI permit noninvasive acquisition of data related to changes in the concentration of dissolved oxygen (pO2) and changes in hemoglobin saturation (sO2) under air- and oxygen- breathing (hyperoxic challenge).The aim of this project was to determine whether MRI methods can provide information relating to placental oxygenation in normal and FGR-compromised pregnancy, to investigate fetal brain oxygenation and to assess the potential confound of placental perfusion changes under hyperoxic challenge. After optimization of sequences in non-pregnant volunteers, similar pO2 and sO2 increases under hyperoxic challenge were seen in normal and FGR pregnancy. This suggested placental oxygenation was similar and that fetal extraction of oxygen may be a likelier cause of fetal hypoxia. Normal fetal brain oxygenation was found not to increase under hyperoxic challenge, which may be due to hemodynamic adaptation to limit cerebral hyperoxygenation. Finally, the robustness of these oxygenation results was supported by the lack of placental perfusion changes observed under hyperoxia using Arterial Spin Labeling (ASL).In conclusion, MRI methods successfully provided information on placental and fetal oxygenation in normal and abnormal pregnancy, obtaining novel data informing the aetiology of FGR and the physiology of the fetal brain.
6

DNA Molecules Stretching in Torus-type Microchannels

Lin, Ci-jie 05 August 2010 (has links)
In this study, we design different inscribed/circumscribed circular torus-type microchannels to investigate the stretching behavior of DNA molecules. Strain rate and relaxation time play an important role in DNA stretching. In order to perform an analysis of the coil-stretch transition of DNA, we develop a method of stretching DNA molecules by using £gPIV and CLSM measurements. £gPIV is designed to measure the velocity distribution, after which the local strain rate can be estimated. The hydrodynamic stretching of DNA molecules in the elongation flow is observed using a confocal laser scanning microscope (CLSM). The relaxation time of the DNA molecules is then estimated according to the CLSM images analysis. At present, our experiments using the electro-osmotic flow (EOF) driven at various electric fields and viscosities to stretch DNA molecules show how one can investigate the influence of hydrodynamic interactions in the case of stretching of DNA molecules.
7

Magnetic resonance line-shape and relaxation time studies of rotational diffusion in liquids

Phillips, Paul Stewart January 1985 (has links)
A new numerical analysis method, dispersion vs. absorption plots (DISPA), has been developed for ESR. This method may be used for semi-quantitative line-shape studies and is useful both as a diagnostic and analytical tool. In addition it provides a method of automatic phasing for magnetic resonance spectra. Numerous examples of its applications, both simulated and experimental are presented, with emphasis on spin-probe studies. The digital acquisition and processing methods used for these studies are also briefly discussed. ESR and NMR relaxation time studies of the bis(dialkyl-N-carbodithioate) metal(II) class of spin-probes have been performed. The T₁,'s of ¹³C and ²H enriched nickel complex were measured by NMR. The line-widths of ⁶³Cu complex were measured by ESR and analysed by Redfield theory. The two sets of results were combined to give the principal elements of the rotational diffusion tensor for the pyrollidine derivative in toluene. This is the first time that ESR and NMR studies have been combined to measure a diffusion tensor. A general strategy for this approach is presented. ESR data from previous work has been re-analysed in the light of the new results. The analysis shows that the commonly used assumption of isotropic diffusion is extremely misleading. / Science, Faculty of / Chemistry, Department of / Graduate
8

Physical Aging and Characterization of Engineering Thermoplastics and Thermoplastic Modified Epoxies

Muggli, Mark W. 02 October 1998 (has links)
In this work the relationship between physical properties, such as physical aging and relaxation time distributions, and chemical structure for a variety of polymeric systems were investigated. Although there is a vast amount of physical aging data for polymers, most of these studies do not attempt to correlate structure with physical aging. Therefore, a set of engineering thermoplastics was examined with the goal of relating certain of their characteristic molecular dimensions to their mechanical and volumetric physical aging attributes.Another series of polymeric materials, based on a poly(ether sulfone) backbone, and having various endgroups differing in size, was also studied to determine physical aging rates and relaxation time distributions. Furthermore, it was concluded that the density of the poly(ether sulfones) increased while the glass transition temperature decreased as the endgroup became smaller.Thermoplastic toughened epoxies were also examined to clarify the importance of covalent bonds between toughener and epoxy on physical aging, relaxation time distributions and fracture toughness. In these studies the covalently bonded tougheners differed from their non-reactive counterparts in the rates of volumetric physical aging at high temperatures for the difunctional epoxy. The solvent resistance of the reactive thermoplastic toughened tetrafunctional epoxy was higher than the non-reactive thermoplastic toughened system. The tetrafunctional epoxies with the reactive toughener also had higher toughener glass transition temperatures. / Ph. D.
9

The relationship between Aging and T1 relaxation time in deep gray matter: A voxel-based analysis / 深部灰白質における加齢とT1緩和時間の相関関係:ボクセルベース解析

Okubo, Gosuke 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20257号 / 医博第4216号 / 新制||医||1020(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 宮本 享, 教授 村井 俊哉, 教授 高橋 淳 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
10

Investigation of polarization switching over broad time and field domains in various ferroelectrics

Jullian, Christelle Francoise 08 January 2004 (has links)
Investigations of polarization switching over broad time and electric field domains, in various modified Pb-based perovskite ferroelectrics, were systematically performed by ferroelectric switching current transient and bipolar drive P-E responses. Studies were performed from E«Ec to E»Ec, where Ec is the coercive field These investigations have shown the presence of broad relaxation time distributions for the switching process, which can extend over several decades in order of magnitude in time, and where the distribution is strongly dependent on the applied electric field. By performing the study of domain dynamics and polarization switching over extremely broad time domains (10⁻⁸ t < 10² sec), more complete information has been obtained that allows for development of a better mechanistic understanding. Prior polarization kinetics studies have focused on relatively narrow time ranges, and were fit to the Avarami equation, which contains a single relaxation time. However, our broad band width polarization dynamics and frequency relaxation studies have been fit to multiple stretched exponential functions extending over decades of order of magnitude in the time domain. Stretched exponential functions for domain nuclei formation, and for domain variant growth have been found. For example, [001]c, [110]c, and [111]c oriented PZN-4.5%PT crystals, nucleation was found to be a volume process (n=3) rather than just a domain wall restricted process. Consequently, nucleation is heterogeneous. And, growth of a domain variant with reversed polarization was found to be a boundary process (n=2), involving diffuse or rough domain walls. We have extended these studies to various types of ferroelectrics including hard, soft and relaxor types. / Master of Science

Page generated in 0.1077 seconds