• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-invasive Monitoring of Degradation of Poly (lactide-co-glycolide) Hollow Fiber Channel for Recovery of Spinal Cord Injury Using Magnetic Resonance Imaging

Shahabi, Sagedeh Sadat 07 December 2012 (has links)
Spinal cord injury (SCI) leads to axonal damage and limits the ability of the brain to communicate with the rest of the body. Several bioengineered approaches have been developed for the recovery of SCI. Among these techniques, degradable guidance tubes have shown promising results. However, design of nerve guide tubes requires several design considerations and has been a significant challenge. To assess the efficacy of a prototypical implanted nerve guide tubes, it is essential to perform continuous monitoring. In this respect, magnetic resonance imaging (MRI) is one of the most reliable imaging techniques as it offers the ability to achieve extraordinary high temporal and spatial resolution in addition to its non-invasive features. In spite of the excellent image quality of non-enhanced MRI various types of contrast agents have been developed to further enhance the contrast and allow improved visualization. The MRI contrast agents principally work by shortening the T1 or T2 relaxation times of protons located nearby. The presented study was intended to evaluate the in vitro degradation of the nerve guide tubes made of poly (lactic-co-glycolic acid) (PLGA). PLGA tubes incorporated with different concentrations of superparamagnetic iron oxide (SPIO) were scanned by MRI 3T on weekly basis during the degradation period. Spin-echo (SE) sequence with various echo times (TEs) ranged from 13.3 to 314.4 msec was applied. T2 mapping was computed using in-house algorithm developed in Matlab. Least square fit was used to find the slope of the decay curve by plotting log intensity on the y-axis and echo time on the x-axis. The average T2 values were calculated. Mass loss and water uptake of the degrading tubes were also measured weekly. Moreover, the micro-structural changes of the tubes were investigated using the scanning electron microscope (SEM). The MRI results showed that the concentration of SPIO affects the signal intensity of the T2 weighted images reducing the T2 relaxation time value. Accordingly, a linear correlation between SPIO concentration and T2 relaxation time was found. At the beginning of degradation, the SPIO nanoparticles were trapped within the polymeric network. Therefore, water penetration was the predominant factor affecting the T2 relaxation times. At week 5, a significant mass loss was observed. From this stage onwards, the trapped SPIO were released from the polymeric network increasing T2 relaxation time dramatically. According to SEM images, the size of the pores in PLGA guide tubes was increased with the degradation. Approaching the end of degradation, shrinkage of the tubes was observed and the degraded nerve guide tubes were shown to be collapsed. Similar shape variation was observed in T2 weighted MR images. In summary, this study provided an approach to non-invasive monitoring of degradation behavior of nerve guide tubes using contrast enhancement. The developed technique is of great importance since it opened an insight to non-invasive monitoring of tissue engineered scaffolds for in vivo studies.
2

Non-invasive Monitoring of Degradation of Poly (lactide-co-glycolide) Hollow Fiber Channel for Recovery of Spinal Cord Injury Using Magnetic Resonance Imaging

Shahabi, Sagedeh Sadat 07 December 2012 (has links)
Spinal cord injury (SCI) leads to axonal damage and limits the ability of the brain to communicate with the rest of the body. Several bioengineered approaches have been developed for the recovery of SCI. Among these techniques, degradable guidance tubes have shown promising results. However, design of nerve guide tubes requires several design considerations and has been a significant challenge. To assess the efficacy of a prototypical implanted nerve guide tubes, it is essential to perform continuous monitoring. In this respect, magnetic resonance imaging (MRI) is one of the most reliable imaging techniques as it offers the ability to achieve extraordinary high temporal and spatial resolution in addition to its non-invasive features. In spite of the excellent image quality of non-enhanced MRI various types of contrast agents have been developed to further enhance the contrast and allow improved visualization. The MRI contrast agents principally work by shortening the T1 or T2 relaxation times of protons located nearby. The presented study was intended to evaluate the in vitro degradation of the nerve guide tubes made of poly (lactic-co-glycolic acid) (PLGA). PLGA tubes incorporated with different concentrations of superparamagnetic iron oxide (SPIO) were scanned by MRI 3T on weekly basis during the degradation period. Spin-echo (SE) sequence with various echo times (TEs) ranged from 13.3 to 314.4 msec was applied. T2 mapping was computed using in-house algorithm developed in Matlab. Least square fit was used to find the slope of the decay curve by plotting log intensity on the y-axis and echo time on the x-axis. The average T2 values were calculated. Mass loss and water uptake of the degrading tubes were also measured weekly. Moreover, the micro-structural changes of the tubes were investigated using the scanning electron microscope (SEM). The MRI results showed that the concentration of SPIO affects the signal intensity of the T2 weighted images reducing the T2 relaxation time value. Accordingly, a linear correlation between SPIO concentration and T2 relaxation time was found. At the beginning of degradation, the SPIO nanoparticles were trapped within the polymeric network. Therefore, water penetration was the predominant factor affecting the T2 relaxation times. At week 5, a significant mass loss was observed. From this stage onwards, the trapped SPIO were released from the polymeric network increasing T2 relaxation time dramatically. According to SEM images, the size of the pores in PLGA guide tubes was increased with the degradation. Approaching the end of degradation, shrinkage of the tubes was observed and the degraded nerve guide tubes were shown to be collapsed. Similar shape variation was observed in T2 weighted MR images. In summary, this study provided an approach to non-invasive monitoring of degradation behavior of nerve guide tubes using contrast enhancement. The developed technique is of great importance since it opened an insight to non-invasive monitoring of tissue engineered scaffolds for in vivo studies.
3

Non-invasive Monitoring of Degradation of Poly (lactide-co-glycolide) Hollow Fiber Channel for Recovery of Spinal Cord Injury Using Magnetic Resonance Imaging

Shahabi, Sagedeh Sadat January 2012 (has links)
Spinal cord injury (SCI) leads to axonal damage and limits the ability of the brain to communicate with the rest of the body. Several bioengineered approaches have been developed for the recovery of SCI. Among these techniques, degradable guidance tubes have shown promising results. However, design of nerve guide tubes requires several design considerations and has been a significant challenge. To assess the efficacy of a prototypical implanted nerve guide tubes, it is essential to perform continuous monitoring. In this respect, magnetic resonance imaging (MRI) is one of the most reliable imaging techniques as it offers the ability to achieve extraordinary high temporal and spatial resolution in addition to its non-invasive features. In spite of the excellent image quality of non-enhanced MRI various types of contrast agents have been developed to further enhance the contrast and allow improved visualization. The MRI contrast agents principally work by shortening the T1 or T2 relaxation times of protons located nearby. The presented study was intended to evaluate the in vitro degradation of the nerve guide tubes made of poly (lactic-co-glycolic acid) (PLGA). PLGA tubes incorporated with different concentrations of superparamagnetic iron oxide (SPIO) were scanned by MRI 3T on weekly basis during the degradation period. Spin-echo (SE) sequence with various echo times (TEs) ranged from 13.3 to 314.4 msec was applied. T2 mapping was computed using in-house algorithm developed in Matlab. Least square fit was used to find the slope of the decay curve by plotting log intensity on the y-axis and echo time on the x-axis. The average T2 values were calculated. Mass loss and water uptake of the degrading tubes were also measured weekly. Moreover, the micro-structural changes of the tubes were investigated using the scanning electron microscope (SEM). The MRI results showed that the concentration of SPIO affects the signal intensity of the T2 weighted images reducing the T2 relaxation time value. Accordingly, a linear correlation between SPIO concentration and T2 relaxation time was found. At the beginning of degradation, the SPIO nanoparticles were trapped within the polymeric network. Therefore, water penetration was the predominant factor affecting the T2 relaxation times. At week 5, a significant mass loss was observed. From this stage onwards, the trapped SPIO were released from the polymeric network increasing T2 relaxation time dramatically. According to SEM images, the size of the pores in PLGA guide tubes was increased with the degradation. Approaching the end of degradation, shrinkage of the tubes was observed and the degraded nerve guide tubes were shown to be collapsed. Similar shape variation was observed in T2 weighted MR images. In summary, this study provided an approach to non-invasive monitoring of degradation behavior of nerve guide tubes using contrast enhancement. The developed technique is of great importance since it opened an insight to non-invasive monitoring of tissue engineered scaffolds for in vivo studies.
4

T2 relaxation of articular cartilage:normal variation, repeatability and detection of patellar cartilage lesions

Hannila, I. (Ilkka) 10 May 2016 (has links)
Abstract Cartilage-related diseases such as osteoarthritis (OA) are a major cause of disability and decrease in the quality of life. Moreover OA causes a heavy economical burden on the social welfare and health care systems. Conventional magnetic resonance imaging (MRI) provides accurate noninvasive method of morphological evaluation of the articular cartilage. However, there are early degenerative changes in the articular cartilage that can be evaluated with modern quantitative MRI methods prior to the signs of cartilage loss. In this study, T2 relaxation time of the articular cartilage was further evaluated in 1.5T in vivo using clinical patients and asymptomatic volunteers. The detection of focal patellar cartilage lesions in T2 mapping as compared to standard clinical MRI was evaluated. T2 mapping showed more lesions than the clinical MRI, and in T2 maps the lesions appeared generally wider. This suggests that T2-mapping is feasible in the clinical setting and may reveal cartilage lesions not seen in the standard knee MRI. The normal topographical variation of T2 relaxation time of articular cartilage in different compartments of the knee joint and at different zones of cartilage in young healthy adults was assessed. T2 values were significantly higher in the superficial zone as compared to the deep tissue at all locations and there was remarkable variation in T2 relaxation between different locations. The normal variation in cartilage T2 within a joint is significant and should be acknowledged when pathology-related T2 changes are investigated. The short- and long-term repeatability of T2 relaxation time measurements of articular cartilage in the knee joint was assessed. The results showed mostly good repeatability, and with careful patient positioning T2 relaxation time at the different cartilage surfaces of the knee can be accurately determined. / Tiivistelmä Nivelrikko, joka usein liittyy nivelruston vaurioitumiseen, aiheuttaa merkittävää toimintakyvyn ja elämänlaadun heikentymistä ikääntyvässä väestössä. Lisäksi nivelrikosta aiheutuu merkittäviä kustannuksia sosiaali- ja terveydenhuollolle. Magneettikuvaus on tarkka kajoamaton menetelmä rustovaurioiden arvioimiseksi. Kuitenkin rustovaurion alkuvaiheessa tapahtuu ruston sisäisiä rakenteellisia ja biokemiallisia muutoksia, joita on mahdollista arvioida uusilla kvantitatiivisilla magneettikuvausmenetelmillä ennen varsinaisten rustopuutosten kehittymistä. Tässä tutkimuksessa tutkittiin ruston T2-relaksaatioaikamittausta 1.5T magneettikuvauslaitteella sekä potilasaineistossa että vapaaehtoisilla. Tutkimuksessa verrattiin paikallisten rustomuutosten havaitsemisen herk¬kyyttä T2-relaksaatioaikakartoituksen ja tavanomaisen kliinisen magneetti¬kuvauksen välillä kliinisessä potilasaineistossa. T2-relaksaatiomittaus osoitti useampia muutoksia kuin kliininen magneettikuvaus ja muutokset olivat yleensä laajempia. Voidaan olettaa, että T2-relaksaatioaikamittaus soveltuu kliiniseen käyttöön ja voi osoittaa tavanomaisessa magneettikuvauksessa näkymättömiä rustomuutoksia. Tutkimuksessa arvioitiin ruston T2-relaksaatioajan paikkakohtaista ja kerroksittaista vaihtelua polven nivelpintojen eri alueilla nuorten vapaaehtoisten aineistossa. T2-relaksaatioaika oli merkitsevästi pidempi ruston pinnallisessa kuin syvässä kerroksessa kaikilla nivelpintojen alueilla. Lisäksi T2-relaksaatioajassa oli merkittävää normaalia vaihtelua eri alueiden välillä ja tämä tulisi huomioida ruston patologisia muutoksia arvioitaessa. Tutkimuksessa arvioitiin polven ruston T2-relaksaatioajan lyhyen ja pitkän aikavälin toistettavuutta vapaaehtoisaineistossa. Tulokset osoittivat enimmäkseen hyvää toistettavuutta ja huolellisella asettelulla voidaan ruston T2-relaksaatioaika mitata luotettavasti polven nivelpintojen eri alueilla.
5

Využití multi-echo sekvencí pro DSC-MRI / Using multi-echo sequences in DSC-MRI

Černý, Štěpán January 2016 (has links)
The task of this thesis is to study the subject of perfusion analysis based on dynamic imaging with T2/T2* contrast. The focus was on the acquisition commonly used for DSC-MRI and especially in the acquisition pulse sequences that use images with different echo time, so called Multi-echo sequence. Principles of dynamic measurement by magnetic resonance imaging, the role of contrast agents and their influence on the relaxation times are described. It also describes the problems perfusion analysis, measurement and mathematical modeling parameters entering to the convolution dependency for getting perfusion parametersIn the experimental part is developed automatic algorithm to gain curves relaxation time T2 *. Next, the synthetic data are created and tested robustness estimate perfusion parameters against noise. In the next phase of work there are compared real scanned objects with using a conversion with T2 * and free of T2*. In the last phase of work is compared influence of length of used echo times on concentration curves and after perfusion analysis influence on resulting perfusion parameters.

Page generated in 0.0819 seconds