• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 29
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 190
  • 190
  • 75
  • 63
  • 49
  • 30
  • 25
  • 25
  • 16
  • 14
  • 14
  • 14
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

The mammalian type II gonadotropin-releasing hormone receptor : cloning, distribution and role in gonadotropin gene expression

Van Biljon, Wilma 12 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2006. / ENGLISH ABSTRACT: Gonadotropin-releasing hormone (GnRH) is well known as the central regulator of the reproductive system through its stimulation of gonadotropin synthesis and release from the pituitary via binding to its specific receptor, known as the gonadotropin-releasing hormone receptor type I (GnRHR-I). The gonadotropins, luteinising hormone (LH) and follicle-stimulating hormone (FSH), bind to receptors in the gonads, leading to effects on steroidogenesis and gametogenesis. The recent finding of a second form of the GnRH receptor, known as the type II GnRHR or GnRHR-II, in non-mammalian vertebrates triggered the interest into the possible existence and function of a GnRHR-II in humans. The current study addressed this issue by investigating the presence of transcripts for a GnRHR-II in various human tissues and cells. While it was demonstrated that antisense transcripts for this receptor, containing sequence of only two of the three coding exons, are ubiquitously and abundantly expressed in all tissues examined, potentially full-length (containing all three exons), sense transcripts for a GnRHR-II were detected only in human ejaculate. Further analysis revealed that the subset of cells in the ejaculate expressing these transcripts is mature sperm. These findings, together with the reported role for GnRH in spermatogenesis and reproduction led to the further analysis of the presence of a local GnRH/GnRHR network in human and vervet monkey ejaculate or sperm. Indeed, such a network seems to be present in humans since transcripts for both forms of GnRH present in mammals, as well as transcripts for the GnRHR-I, are expressed in human ejaculate. Furthermore, transcripts for the GnRHR-II are expressed in both human and vervet monkey ejaculate. Thus, it would appear that locally produced GnRH-1 and/or GnRH-2 in the human male reproductive tract might mediate their effects on fertility via a local GnRHR-I, and possibly via GnRHR-II. Remarkably, in the pituitary, LH and FSH are present in the same gonadotropes, yet they are differentially regulated by GnRH under various physiological conditions. While it is well established that post-transcriptional regulatory mechanisms occur, the contribution of transcriptional regulation to the differential expression of the LHβ- and FSHβ-subunit genes is unclear. In this study, the role of GnRH-1 and GnRH-2 via the GnRHR-I and the GnRHR-II in transcriptional regulation of mammalian LHβ- and FSHβ genes was determined in the LβT2 mouse pituitary gonadotrope cell-line. It is demonstrated for the first time that GnRH-1 may affect gonadotropin subunit gene expression via GnRHR-II in addition to GnRHR-I, and that GnRH-2 also has the ability to regulate gonadotropin subunit gene expression via both receptors. Similar to other reports, it is shown that the transcriptional response to GnRH-1 of LHβ and FSHβ is low (about 1.4-fold for bLHβLuc and 1.2-fold for oFSHβLuc). In addition, evidence is supplied for the first time that GnRH-2 transcriptional regulation of the gonadotropin β subunits is also low (about 1.5-fold for bLHβLuc and 1.1-fold for oFSHβLuc). It is demonstrated that GnRH-1 is a more potent stimulator of bLHβ promoter activity as compared to GnRH-2 via the GnRHR-I, yet both hormones result in a similar maximum induction of bLHβ. However, GnRH-2 is a more efficacious stimulator of bLHβ transcription via the GnRHR-II than GnRH-1. No discriminatory effect of GnRH-1 vs. GnRH-2 was observed for oFSHβ promoter activity via GnRHR-I or GnRHR-II. By comparison of the ratio of expression of transfected oFSHβ- and bLHβ promoterreporters via GnRH-1 with that of GnRH-2, it is shown that GnRH-2 is a selective regulator of FSHβ gene transcription. This discriminatory effect of GnRH-2 is specific for GnRHR-I, as it is not observed for GnRHR-II, where GnRH-1 results in a greater oFSHβ- to-bLHβ ratio. These opposite selectivities for GnRHR-I and GnRHR-II on the ratios of oFSHβ:bLHβ promoter activity for GnRH-1 vs. GnRH-2 suggest a mechanism for fine control of gonadotropin regulation in the pituitary by variation of relative GnRHR-I vs. GnRHR-II levels. In addition, a concentration-dependent modulatory role for PACAP on GnRH-1- and GnRH-2-mediated regulation of bLHβ promoter activity, via both GnRHR-I and GnRHR-II, and of oFSHβ promoter activity, via GnRHR-I, is indicated. The concentration-dependent effects suggest the involvement of two different signalling pathways for the PACAP response. Together these findings suggest that transcription of the gonadotropin genes in vivo is under extensive hormonal control that can be finetuned in response to varying physiological conditions, which include changing levels of GnRH-1, GnRH-2, GnRHR-I and GnRHR-II as well as PACAP. / AFRIKAANSE OPSOMMING: Gonadotropien-vrystellingshormoon (GnRH) is bekend as die sentrale reguleerder van die voorplantingsisteem deur die stimulasie van gonadotropiensintese en - vrystelling vanaf die pituïtêre klier via binding aan ‘n spesifieke reseptor, die sogenaamde tipe I gonadotropien-vrystellingshormoonreseptor (GnRHR-I). Die gonadotropiene, lutineringshormoon (LH) en follikel-stimuleringshormoon (FSH), bind aan reseptore in die gonades waar dit steroïedogenese en gametogenese beïnvloed. Die onlangse ontdekking van ‘n tweede vorm van die GnRH-reseptor, bekend as die tipe II GnRHR of GnRHR-II, in nie-soogdier vertebrate het belangstelling in die moontlike bestaan en funksie van ‘n GnRHR-II in die mens gewek. Hierdie kwessie is aangeraak deur die teenwoordigheid van transkripte vir ‘n GnRHR-II in verskeie weefsel- en seltipes van die mens te ondersoek. Daar is aangetoon dat nie-sin transkripte vir hierdie reseptor, wat die DNA-opeenvolgings van slegs twee van die drie koderende eksons bevat het, oormatig uitgedruk word in al die weefseltipes wat ondersoek is. Daarteenoor is potensieel vollengte (bevattende al drie eksons) sin transkripte vir ‘n GnRHR-II in die mens slegs in semen gevind. Verdere analise het getoon dat dit volwasse sperma binne die semen is wat laasgenoemde transkripte uitdruk. Hierdie bevindinge, tesame met die aangetoonde rol vir GnRH in spermatogenese en reproduksie het gelei tot die verdere analise van die teenwoordigheid van ‘n lokale GnRH/GnRHR-netwerk in mens- en blouaapsemen of -sperm. So ‘n netwerk blyk om teenwoordig te wees in die mens, aangesien transkripte vir beide vorme van GnRH wat in soogdiere gevind word, asook transkripte vir die GnRHR-I, in menssemen uitgedruk word. Daarbenewens word transkripte vir die GnRHR-II uitgedruk in beide mens- en blouaapsemen. Dit wil dus voorkom asof lokaalgeproduseerde GnRH-1 en/of GnRH-2 in die manlike voortplantingstelsel van die mens hul effek op vrugbaarheid bemiddel via ‘n lokale GnRHR-I, en moontlik ook via GnRHR-II. Dit is opmerklik dat LH en FSH teenwoordig is in dieselfde gonadotroopselle van die pituïtêre klier en tog verskillend gereguleer word deur GnRH tydens verskeie fisiologiese kondisies. Terwyl dit bekend is dat post-transkripsionele reguleringsmeganismes teenwoordig is, is die bydrae van transkripsionele regulering tot die differensiële uitdrukking van die LHβ- en FSHβ-subeenheidgene minder duidelik. In hierdie studie is die rol van GnRH-1 en GnRH-2 via die GnRHR-I en die GnRHR-II in transkripsionele regulering van soogdier-LHβ- en -FSHβ-gene in die LβT2 muis pituïtêre gonadotroopsellyn bepaal. Dit is vir die eerste keer aangetoon dat GnRH-1 ‘n effek mag hê op gonadotropiensubeenheid-geenuitdrukking via GnRHR-II bykomend tot GnRHR-I, en dat GnRH-2 ook die vermoë besit om gonadotropiensubeenheid-geenuitdrukking via beide reseptore te reguleer. Soos deur ander studies aangetoon is die transkripsionele respons van LHβ en FSHβ tot GnRH-1 klein (ongeveer 1.4-voudig vir bLHβLuc en 1.2- voudig vir oFSHβLuc). Verder is daar vir die eerste keer bewys gelewer dat transkripsionele regulering van die gonadotropien β-subeenhede deur GnRH-2 ook gering is (ongeveer 1.5-voudig vir bLHβLuc en 1.1-voudig vir oFSHβLuc). Daar is aangetoon dat GnRH-1 ‘n sterker stimuleerder van bLHβ-promotoraktiwiteit is in vergelyking met GnRH-2 via die GnRHR-I, hoewel beide hormone tot ‘n soortgelyke maksimum induksie van bLHβ lei. GnRH-2 is egter ‘n meer effektiewe stimuleerder van bLHβ-transkripsie as GnRH-1 via die GnRHR-II. Geen verskille is gevind tussen die effekte van GnRH-1 en GnRH-2 op oFSHβ-promotoraktiwiteit via GnRHR-I of GnRHR-II nie. Wanneer die verhouding van uitdrukking van getransfekteerde oFSHβ- en bLHβ- promotor-verslaggewers via GnRH-1 met dié van GnRH-2 vergelyk is, is aangetoon dat GnRH-2 ‘n selektiewe reguleerder van FSHβ-geentranskripsie is. Hierdie diskriminasieeffek van GnRH-2 is spesifiek vir GnRHR-I aangesien dit nie vir GnRHR-II waargeneem word nie. GnRH-1 lei tot ‘n groter oFSHβ tot bLHβ-verhouding via GnRHR-II. Hierdie teenoorgestelde selektiwiteite van GnRHR-I en GnRHR-II op die verhoudings van oFSHβ tot bLHβ-promotoraktiwiteit vir GnRH-1 teenoor GnRH-2 suggereer dat daar ‘n meganisme bestaan vir die fyn regulering van gonadotropiene in die pituïtêre klier, deurdat die relatiewe vlakke van GnRHR-I teenoor GnRHR-II gevarieer word. Daarbenewens is ‘n konsentrasie-afhanklike moduleringsrol vir PACAP op GnRH-1- en GnRH-2-bemiddelde regulering van bLHβ-promotoraktiwiteit aangetoon, via beide GnRHR-I en GnRHR-II, asook op oFSHβ-promotoraktiwiteit via GnRHR-I. Hierdie konsentrasie-afhanklike effekte dui op die betrokkenheid van twee verskillende seinpadweë vir die PACAP-respons. Tesame suggereer hierdie bevindinge dat transkripsie van die gonadotropiengene in vivo onder ekstensiewe hormonale kontrole is wat verfyn kan word in respons to veranderlike fisiologiese kondisies. Laasgenoemde sluit veranderende vlakke van GnRH-1, GnRH-2, GnRHR-I en GnRHR-II asook PACAP in.
92

Transcriptional regulation of the gonadotropin-releasing hormone receptor (GnRHR) gene by glucocorticoids

Fernandes, S. M. (Sandra Maria) 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: The gonadotropin-releasing hormone (GnRH) receptor is a G-protein-coupled receptor in the pituitary gonadotropes and is an important control point for reproduction. GnRH binds to the GnRH receptor (GnRHR) resulting in the synthesis and release of follicle stimulating hormone (FSH) and luteinizing hormone (LH). The sensitivity of the pituitary to GnRH can be directly correlated with GnRHR levels. The mouse GnRHR promoter contains three cis elements containing binding sites for steroidogenic factor-1 (SF-1), namely site 1 (-15/-7), site 2 (-244/- 236) and site 3 (-304/-296) as well as an activator protein-1 (AP-1)-like consensus sequence (TGAGTCA) at position –336/-330. While sites 1 and 2 and the AP-1 site have been previously shown to be involved in regulation of transcription of the mouse GnRHR (mGnRHR) promoter in some cell lines, the role of site 3 has not been previously investigated. This study investigated whether transcription of the mGnRHR gene is regulated by GnRH and glucocorticoids in the LβT2 gonadotrope pituitary cell line, and the role therein of site 3 and the AP-1 site and their cognate proteins, using a combination of in vitro protein- DNA binding studies and promoter-reporter assays. The role played by site 3 and the AP-1 site in basal transcription of the mGnRHR gene in LβT2 cells was the first area of investigation during this study. Luciferase reporter plasmids containing 600 bp of the mGnRHR promoter were used where the site 3 and AP-1 sites were either wild-type or mutated. Two constructs were prepared from the wild-type construct, i.e. wild type (LG), site 3 mutant (m3) and AP-1 mutant (mAP-1). Transfection of LG, m3 and mAP-1 plasmids into LβT2 cells was carried out to determine the effect of these mutations on the basal expression of the mGnRHR gene. Mutation of site 3 resulted in a 1.5 fold increase in the transcriptional activity of the mGnRHR promoter. This suggests that site 3 plays a role in the inhibition of basal transcriptional levels of the mGnRHR promoter in LβT2 cells. Mutation of the AP-1 site resulted in a 50% decrease in basal transcriptional levels of the mGnRHR promoter in LβT2 cells. This suggests that the AP-1 site is involved in positively mediating the basal transcriptional response of the GnRHR promoter in LβT2 cells. Experiments towards the understanding of the mechanism of the cis elements (site 3 and AP-1 site) on the mGnRHR promoter were carried out along with the role of protein kinase A (PKA) pathways, proteins involved and the effect of varying doses for varying times of GnRH, as well as the overexpression of PKA and the SF-1 protein. It was found that site 3 and the AP-1 site are not involved in the GnRH response. Results suggest that site 3 is partially involved in the PKA response in LβT2 cells. Site 3 can bind SF-1 protein as shown via competitive electrophoretic mobility shift assays (EMSA). When EMSA’s were performed on the AP-1 site the findings were that the c-Fos protein was not involved in the activation of the AP-1 site. A factor was found to bind to the AP-1 site, which did not require the intact AP-1 site, suggesting that it could be the c-Jun protein that binds to the AP-1 site under basal conditions. Another area that was investigated was whether the mGnRHR promoter can be regulated by dexamethasone (dex) either via the AP-1 site or site 3. A dose and time-dependent increase in promoter activity was observed with dex. This effect appears to require site 3 and the AP-1 site, as shown by the complete loss of response when these sites were individually mutated, consistent with a functional interaction between site 3 and the AP-1 site in LβT2 cells. / AFRIKAANSE OPSOMMING: Die gonadotropienvrystellings hormoon (GnRH) reseptor is ‘n G-proteïen-gekoppelde reseptor in die pituitêre gonadotrope en is ’n belangrike beheerpunt vir reproduksie. GnRH bind aan die GnRH reseptor (GnRHR) met die gevolg dat follikel stimulerende hormoon (FSH) en luteïeniserende (LH) gesintetiseer en vrygestel word. Die sensitiwiteit van die pituitêre klier vir GnRH kan direk met GnRHR vlakke gekorreleer word. Die muis GnRHR promotor bevat drie cis elemente met bindingssetels vir steroïedogeniese faktor 1 (SF1), naamlik setel 1 (-15/-7), setel 2 (-244/-236) en setel 3 (-304/-296) sowel as ’n aktiveerder proteïen 1 (AP-1) tipe konsensus sekwens (TGAGTCA) in posisie -336/-330. Terwyl setels 1 en 2 en die AP-1 setel voorheen getoon is om by die regulering van transkripsie van die muis GnRHR (mGnRHR) promotor in party sellyne betrokke te wees, is die rol van setel 3 nog nie vantevore bestudeer nie. In hierdie studie is ondersoek of die transkripsie van die mGnRHR geen deur GnRH en glukokortikoïede in die LβT2 gonadotroop pituitêre sellyn gereguleer word, en die rol van setel 3 en die AP-1 setel en hulle binders, deur gebruik te maak van in vitro proteïen-DNA bindings studies en promotor-verslaggewer essais. Die rol wat setel 3 en die AP-1 setel in basale transkripsie van die mGnRHR gene in LβT2 selle gespeel het, was die eerste onderwerp wat in hierdie studie bestudeer is. Lusiferase verslaggewer plasmiede wat die eerste 600 bp van die mGnRHR promotor bevat het en waarin setel 3 en die AP-1 setels óf wilde tipe óf gemuteer was, is gebruik. Two konstrukte is vanaf die wilde tipe konstruk berei, naamlik wilde tipe (LG), ’n setel 3 mutant (m3) en ’n AP-1 mutant (mAP-1). Transfeksie van LG, m3 en mAP-1 plasmiede in LβT2 selle is deurgevoer om te bepaal wat die effek van hierdie mutasies op die basale ekspressie van die mGnRHR gene was. Mutasie van setel 3 het ’n 1.5-voudige toename in die transkripsionele aktiwiteit van die mGnRHR promotor tot gevolg gehad. Dit suggereer dat setel 3 ’n rol in die inhibisie van die basale transkripsievlakke van die mGnRHR promotor in LβT2 selle speel. Mutasie van die AP-1 setel het tot ‘n 50% verlaging in basale transkripsievlakke van die mGnRHR promotor in LβT2 selle gelei. Dit suggereer dat die AP-1 setel betrokke is in die positiewe bemiddeling van die basale transkriptionele respons van die GnRHR promotor in LβT2 selle. Eksperimente wat gemik was om die meganisme van die cis-elemente (setel 3 en die AP-1 setel) op die mGnRHR promotor te verklaar, asook om die rol van proteïen kinase A (PKA) paaie, proteïene daarby betrokke en die effek van varieende dosisse vir verskillende tye van GnRH, sowel as die oorekspressie van PKA en die SF-1 proteïen, is deurgevoer. Dit is gevind dat setel 3 en die AP-1 setel nie betrokke by die GnRH respons is nie. Die resultate suggereer dat setel 3 gedeeltelik betrokke is by die PKA respons van LβT2 selle. Setel 3 kan SF-1 proteïen bind soos getoon deur kompeterence elektroforetiese mobiliteits verskuiwings essais (EMSA). As EMSA’s deurgevoer is op die AP-1 setel is bevind dat die c-Fos proteïen nie betrokke is in die aktivering van die AP-1 setel nie. ’n Faktor is gevind om aan die AP-1 setel te bind wat nie ’n intakte AP-1 setel vereis het nie, wat gesuggereer het dat dit die c-Jun proteïen kan wees wat aan die AP-1 setel onder basale omstandighede bind. ’n Ander area wat ondersoek is, is of die GnRHR promotor gereguleer kan word deur deksametasoon (dex) óf via die AP-1 setel óf via setel 3. ’n Dosis en tyds-afhanklike toename in promotor aktiwiteit is waargeneem met dex. ’n Vereiste vir hierdie effek blyk om die teenwoordigheid van setel 3 en die AP-1 setel te wees, soos aangetoon deur die totale verlies aan response as hierdie twee setels individueel gemuteer is, en wat weereens in ooreenstemming met die funksionele interaksie tussen setel 3 en die AP-1 setel in LβT2 selle is.
93

Involvement of NF-kB subunit p65 and retinoic acid receptors RARæ and RXRæ in the transcriptional regulation of the human GnRH II gene

Leung, Kin-yue., 梁建裕. January 2005 (has links)
published_or_final_version / abstract / Zoology / Master / Master of Philosophy
94

Dissection of GnRH receptor-G protein coupling

White, Colin D. January 2009 (has links)
Hypothalamic gonadotropin-releasing hormone (GnRH) (GnRH I) is the central regulator of the mammalian reproductive system. Most vertebrates studied also possess a second form of GnRH, GnRH II. GnRH I acts on its cognate G proteincoupled receptor (GPCR) on pituitary gonadotropes and activates Gq/11-mediated signalling pathways to stimulate the biosynthesis and the release of luteinising hormone (LH) and follicle-stimulating hormone (FSH). Both GnRHs have also been suggested to inhibit cellular proliferation, an action which has largely been proposed to be mediated by the coupling of the receptor to Gi/o. However, the range of G proteins activated by the GnRH receptor and the signalling cascades involved in inducing antiproliferation remain controversial. To delineate the G protein coupling selectivity of the mammalian GnRH receptor and to identify the signalling pathways involved in GnRH I-mediated cell growth inhibition, I examined the ability of the receptor to interact with Gq/11, Gi/o and Gs in Gαq/11 knockout MEF cells. My results indicate that the receptor is unable to interact with Gi/o but can signal through Gq/11. Additionally, my data do not support the suggestion of GnRH receptor-Gs interaction. Furthermore, I show that the GnRH Iinduced inhibition of cell growth is dependent on Gq/11, src and extracellular signal regulated kinase (ERK) but is independent of the activity of protein kinase C (PKC), Ca2+, jun-N-terminal kinase (JNK) or P38. Based on these findings and previous research within our group, I propose a mechanism whereby GnRH I may induce antiproliferation. Previous studies from our laboratory suggest that the GnRH receptor can adopt distinct active conformations in response to the binding of GnRH I and GnRH II. These data thus account for our hypothesis of ligand-induced selective signalling (LiSS). Given my previous results, I examined the ability of the GnRH receptor to couple to G12/13. My work indicates that the receptor can directly activate G12/13 and the downstream signalling cascades associated with this G protein family. Indeed, I provide evidence, in several cellular backgrounds, to suggest that GnRH receptor- G12/13-mediated signalling is involved in the regulation of GnRH-induced MAPK activity, SRE-driven gene transcription and cytoskeletal reorganisation. Furthermore, I propose a role for these G proteins in the transcriptional regulation of LHβ and FSHβ. Finally, I confirm previous results from our laboratory indicating that the GnRH receptor may interact with src Tyr kinase and show that GnRH I but not GnRH II may, independently of Gq/11, stimulate the Tyr phosphorylation and thus the activation of this protein. I propose that this differential signalling accounts for the distinct effects of GnRH I and GnRH II on cellular morphology and SREpromoted transcriptional activity. The research presented within this thesis provides evidence to refute published conclusions based on largely circumstantial experimental data, describes novel GnRH receptor signalling pathways and offers support for the concept of LiSS. It may assist in the development of new therapeutic compounds which selectively target one GnRH-mediated signalling pathway while bypassing others.
95

Maternal plasma corticotrophin-releasing hormone and prediction of spontaneous preterm delivery. / CUHK electronic theses & dissertations collection

January 2001 (has links)
Leung Tse Ngong. / Thesis (M.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 169-197). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web.
96

Roles of activin paracrine system in the oocyte maturation of the zebrafish, Danio rerio. / CUHK electronic theses & dissertations collection / Digital dissertation consortium

January 2001 (has links)
Pang Yefei. / "August 2001." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 161-197). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
97

Expression control of zebrafish gonadotropin receptors in the ovary. / CUHK electronic theses & dissertations collection

January 2012 (has links)
卵泡刺激素(FSH)和促黃體激素(LH)是脊椎動物體內的促性腺激素(GTH)。它們通過其相應的GTH受體(GTHR)- FSH受體(FSHR)及LH/絨毛膜性腺激素受體(LHCGR),來調控雌性脊椎動物的主要性腺活動,如卵泡生成和類固醇生成。因此,GTHR的表達水平可控制卵泡細胞對於GTH的反應程度,從而影響脊椎動物的繁殖能力。 / 然而,跟哺乳動物中的資料相比,這些受體的表達調控機制在硬骨魚類中仍然很模糊。此前,我們已經證明了斑馬魚卵泡之fshr和lhcgr的表達譜差異,顯示出lhcgr的表達滯後於fshr的表達。此表達時間之差異引申出兩條有趣的問題:一)甚麼激素能分別調節fshr和lhcgr的表達? 二)這些調控的機制是甚麼?因此,我們發起本研究來解答這些問題。 / 利用培養出來的斑馬魚卵泡細胞,我們展示了雌二醇(E2)是一個有力的GTHR調控激素。雖然E2同時刺激了fshr和lhcgr的表達,但E2對於lhcgr的表達調控效力遠遠比對fshr的高。由於雌激素核受體(nER)的特異拮抗劑(ICI 182,780)能完全抵消E2的效果,表明了E2是通過傳統的nER來直接促進了lhcgr的表達。有趣的是,不能穿越細胞膜的雌二醇-牛血清白蛋白偶聯複合物(E2-BSA)能完全模仿E2的效果,因此我們的證據提出這些nER可能位於細胞膜上。此外,我們運用各種藥劑發現了多種信號分子跟E2調控GTHR的能力有關,包括cAMP、PKA、PI3K、PKC、MEK、MAPK及p38 MAPK。當中以cAMP-PKA的信號傳導最有可能在E2的雙相調控效果起了直接作用,而E2的行動也極依賴其他信號分子的允許作用。 / 除了E2,人絨毛膜促性腺激素(hCG; LH的類似物)、垂體腺苷酸環化酶激活多肽(PACAP)、表皮生長因子(EGF)和胰島素樣生長因子-I(IGF-I)也能有效地調節斑馬魚卵泡細胞的GTHR表達。hCG能大幅下調其受體lhcgr的表達,顯示hCG能令卵泡細胞對GTH脫敏。與此同時,PACAP能瞬時模仿hCG的行動,表明了PACAP很可能是hCG的瞬態下游信號。EGF是一個強烈抑制lhcgr表達的因子,而IGF-I是一個潛在的fshr表達增強因子,均說明了旁分泌因子對GTHR表達調控有關鍵作用。除了這些激素或因子的獨立調控作用,我們進一步發現了E2的效果可能會被它們覆蓋或調節。它們對nER的調控作用可能會造成這種現象。PACAP瞬時減少了esr2a及esr2b的表達量,而EGF則顯著地下調了esr2a。 / 作為第一個在硬骨魚卵巢中對GTHR調控的全面研究,它無疑豐富了我們對卵泡生成過程中GTH的功能及GTHR表達調控的認識。此外,我們成功將目前的研究平台應用於雙酚A(BPA)的研究,進一步展示了本研究平台的潛力,有助於我們未來對各種內分泌干擾物(EDC)的作用機制進行研究。 / Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are the gonadotropins (GTHs), which bind to their cognate GTH receptors (GTHRs), FSH receptor (FSHR) and LH/choriogonadotropin receptor (LHCGR), to mediate major gonadal events in female vertebrates, including folliculogenesis and steroidogenesis. The expression level of GTHRs, therefore, controls the responsiveness of follicle cells to GTHs and hence governs the vertebrate reproduction. / However, compared with the information in mammals, the expression control of these receptors in teleosts remains largely unknown. Previously, we have demonstrated the differential expression profiles of fshr and lhcgr in the zebrafish folliculogenesis, showing that lhcgr expression lags behind fshr expression. This temporal difference between fshr and lhcgr expression has raised two interesting questions: 1) What hormones regulate the differential expression of fshr and lhcgr? and 2) What are the control mechanisms of these regulations? The present study was initiated to answer these questions. / With the primary zebrafish follicle cell cultures, we demonstrated that estradiol (E2) was a potent differential regulator of GTHRs. Although E2 increased both fshr and lhcgr expression, the up-regulatory potency of E2 on lhcgr was much greater than that on fshr. E2 directly promoted lhcgr expression via classical nuclear estrogen receptors (nERs) since nER-specific antagonist (ICI 182,780) completely abolished the E2 effect. Interestingly, our evidence suggested that these nERs could be localized on the plasma membrane because the membrane-impermeable form of estrogen (E2-BSA) fully mimicked the actions of E2. Furthermore, by applying various pharmaceutical agents, we revealed the involvement of multiple signaling molecules, including cAMP, PKA, PI3K, PKC, MEK, MAPK and p38 MAPK. The cAMP-PKA pathway likely played a direct role in the biphasic actions of E2 while the E2 actions were also greatly dependent on the permissive actions of other signaling molecules. / Apart from the sex steroid E2, human chorionic gonadotropin (hCG; as a LH analogue), pituitary adenlyate cyclase-activating peptide (PACAP), epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) also significantly regulated GTHR expression in the zebrafish follicle cells. hCG drastically down-regulated its receptor, lhcgr, suggesting that hCG could desensitize the follicle cells to respond to GTH. Meanwhile, PACAP transiently mimicked the actions of hCG, indicating that PACAP was likely a transient downstream mediator of hCG. EGF was another strong suppressor of lhcgr expression while IGF-I was a potential fshr expression enhancer, which highlighted the crucial roles of paracrine factors in the regulation of GTHRs. In addition to the regulatory effect of these individual hormones or factors, we further revealed that the E2 action could be overridden or modulated by them. Their regulatory effects on the expression of nERs might contribute to this phenomenon. PACAP transiently reduced esr2a and esr2b expression while EGF significantly down-regulated esr2a. / As the first comprehensive study of GTHR regulation in the teleost ovary, the present study certainly enriched our knowledge in the functions of GTHs and the expression control of GTHRs during folliculogenesis. By applying the current research platform on the study of bisphenol A (BPA), an endocrine-disrupting chemical (EDC), the present study further highlighted the potential of this research platform to contribute to the future action mechanism studies of various EDCs. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Liu, Ka Cheuk. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 159-212). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract (in English) --- p.i / Abstract (in Chinese) --- p.iii / Acknowledgement --- p.v / Table of contents --- p.vi / List of figures and tables --- p.xii / Symbols and abbreviations --- p.xv / Chapter Chapter 1 --- General Introduction / Chapter 1.1 --- Hypothalamic-pituitary-gonadal axis / Chapter 1.1.1 --- Overview --- p.1 / Chapter 1.1.2 --- Gonadotropin-releasing hormone --- p.1 / Chapter 1.2 --- Folliculogenesis / Chapter 1.2.1 --- Structure of ovarian follicles --- p.2 / Chapter 1.2.2 --- Stages of folliculogenesis --- p.3 / Chapter 1.3 --- Gonadotropins and gonadotropin receptors / Chapter 1.3.1 --- History of teleost gonadotropin and gonadotropin receptors --- p.5 / Chapter 1.3.2 --- Structure --- p.6 / Chapter 1.3.3 --- Function --- p.7 / Chapter 1.3.4 --- GTH-GTHR specificity --- p.9 / Chapter 1.3.5 --- Signal transduction --- p.10 / Chapter 1.3.6 --- Expression profile of gonadotropin receptors --- p.11 / Chapter 1.3.7 --- Regulation of gonadotropin receptors --- p.12 / Chapter 1.4 --- Objectives and significances of the project --- p.14 / Chapter 1.5 --- Figure legends --- p.16 / Chapter 1.6 --- Figures --- p.18 / Chapter Chapter 2 --- Differential Regulation of Gonadotropin Receptors (fshr and lhcgr) by Estradiol in the Zebrafish Ovary Involves Nuclear Estrogen Receptors That Are Likely Located on the Plasma Membrane / Chapter 2.1 --- Introduction --- p.24 / Chapter 2.2 --- Materials and methods / Chapter 2.2.1 --- Animals --- p.25 / Chapter 2.2.2 --- Hormones and chemicals --- p.26 / Chapter 2.2.3 --- Primary follicle cell culture and drug treatment --- p.26 / Chapter 2.2.4 --- Ovarian fragment incubation --- p.27 / Chapter 2.2.5 --- Total RNA extraction and real-time qPCR --- p.27 / Chapter 2.2.6 --- Western blot analysis --- p.27 / Chapter 2.2.7 --- SEAP reporter gene assay --- p.28 / Chapter 2.2.8 --- Data analysis --- p.28 / Chapter 2.3 --- Results / Chapter 2.3.1 --- Differential stimulation of fshr and lhcgr expression in ovarian fragments and follicle cells by estradiol but not testosterone --- p.28 / Chapter 2.3.2 --- Potentiation of follicle cell responsiveness to hCG by E2 pretreatment --- p.30 / Chapter 2.3.4 --- Evidence for transcription but not translation-dependent up-regulation of lhcgr by E2 --- p.30 / Chapter 2.3.5 --- Evidence for the involvement of nuclear estrogen receptors but not G protein-coupled estrogen receptor 1 (Gper) in E2-stimulated lhcgr expression --- p.31 / Chapter 2.3.6 --- Evidence for possible localization of estrogen receptors on the plasma membrane --- p.32 / Chapter 2.3.7 --- MAPK dependence of E2 effect on lhcgr expression --- p.32 / Chapter 2.4 --- Discussion --- p.33 / Chapter 2.5 --- Table --- p.38 / Chapter 2.6 --- Figure legends --- p.39 / Chapter 2.7 --- Figures --- p.43 / Chapter Chapter 3 --- Signal Transduction Mechanisms of the Biphasic Estrogen Actions in the Regulation of Gonadotropin Receptors (fshr and lhcgr) in the Zebrafish Ovary / Chapter 3.1 --- Introduction --- p.50 / Chapter 3.2 --- Materials and methods / Chapter 3.2.1 --- Animals --- p.52 / Chapter 3.2.2 --- Hormones and chemicals --- p.52 / Chapter 3.2.3 --- Primary cell culture and drug treatment --- p.52 / Chapter 3.2.4 --- Total RNA extraction and real-time qPCR --- p.52 / Chapter 3.2.5 --- Fractionation of follicle cells --- p.52 / Chapter 3.2.6 --- Western blot analysis --- p.52 / Chapter 3.2.7 --- Statistical analysis --- p.53 / Chapter 3.3 --- Results / Chapter 3.3.1 --- Biphasic roles of cAMP-PKA pathway --- p.53 / Chapter 3.3.2 --- Effects of p38 MAPK inhibition --- p.54 / Chapter 3.3.3 --- Effects of PKC and PI3K inhibition --- p.54 / Chapter 3.4 --- Discussion --- p.55 / Chapter 3.5 --- Figure legends --- p.59 / Chapter 3.6 --- Figures --- p.61 / Chapter Chapter 4 --- Gonadotropin (hCG) and pituitary adenylate cyclase-activating peptide (PACAP) down-regulate basal and E2-stimulated gonadotropin receptors (fshr and lhcgr) in the zebrafish ovary via a cAMP-dependent but PKA-independent pathway / Chapter 4.1 --- Introduction --- p.66 / Chapter 4.2 --- Materials and methods / Chapter 4.2.1 --- Animals --- p.69 / Chapter 4.2.2 --- Hormones and chemicals --- p.69 / Chapter 4.2.3 --- Primary cell culture and drug treatment --- p.69 / Chapter 4.2.4 --- Total RNA extraction and real-time qPCR --- p.69 / Chapter 4.2.5 --- Statistical analysis --- p.69 / Chapter 4.3 --- Results / Chapter 4.3.1 --- Down-regulation of fshr and lhcgr by hCG --- p.69 / Chapter 4.3.2 --- Differential regulation of fshr and lhcgr by PACAP --- p.70 / Chapter 4.3.3 --- Inhibition of E2-regulated fshr and lhcgr expression by hCG --- p.71 / Chapter 4.3.4 --- Suppressive effects of PACAP on E2-induced fshr and lhcgr expression --- p.71 / Chapter 4.3.5 --- Role of cAMP in hCG and PACAP actions --- p.72 / Chapter 4.4 --- Discussion --- p.73 / Chapter 4.5 --- Figure legends --- p.78 / Chapter 4.6 --- Figures --- p.80 / Chapter Chapter 5 --- Paracrine regulation of gonadotropin receptors (fshr and lhcgr) by ovarian growth factors: epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) / Chapter 5.1 --- Introduction --- p.85 / Chapter 5.2 --- Materials and methods / Chapter 5.2.1 --- Animals --- p.88 / Chapter 5.2.2 --- Hormones and chemicals --- p.88 / Chapter 5.2.3 --- Primary cell culture and drug treatment --- p.88 / Chapter 5.2.4 --- Total RNA extraction and real-time qPCR --- p.88 / Chapter 5.2.5 --- Statistical analysis --- p.88 / Chapter 5.3 --- Results / Chapter 5.3.1 --- Biphasic down-regulation of lhcgr by EGF --- p.89 / Chapter 5.3.2 --- Evidence for EGFR involvement --- p.89 / Chapter 5.3.3 --- Minor role of MEK-MAPK3/1 pathway in the EGF effect on lhcgr expression --- p.90 / Chapter 5.3.4 --- Up-regulation of fshr by IGF-I --- p.90 / Chapter 5.3.5 --- Evidence for IGF-IR involvement --- p.91 / Chapter 5.3.6 --- Role of PI3K-Akt pathway in IGF-I action --- p.91 / Chapter 5.3.7 --- Role of EGF and EGFR in E2-induced GTHR expression --- p.91 / Chapter 5.3.8 --- Role of IGF-I and IGF-IR in E2-induced GTHR expression --- p.91 / Chapter 5.4 --- Discussion --- p.92 / Chapter 5.5 --- Figure legends --- p.98 / Chapter 5.6 --- Figures --- p.100 / Chapter Chapter 6 --- Regulation of estrogen receptor subtypes (esr1, esr2a and esr2b): a possible mechanism to modulate estradiol-stimulated lhcgr expression in the zebrafish ovary / Chapter 6.1 --- Introduction --- p.107 / Chapter 6.2 --- Materials and methods / Chapter 6.2.1 --- Animals --- p.110 / Chapter 6.2.2 --- Hormones and chemicals --- p.110 / Chapter 6.2.3 --- Staging ovarian follicles --- p.110 / Chapter 6.2.4 --- Primary cell culture and drug treatment --- p.110 / Chapter 6.2.5 --- Total RNA extraction and real-time qPCR --- p.110 / Chapter 6.2.6 --- Statistical analysis --- p.111 / Chapter 6.3 --- Results / Chapter 6.3.1 --- Expression profiles of estrogen receptors (ERs) in zebrafish folliculogenesis --- p.111 / Chapter 6.3.2 --- Homologous regulation of nERs by E2 --- p.111 / Chapter 6.3.3 --- Regulation of nERs by endocrine hormones (hCG and PACAP) --- p.112 / Chapter 6.3.4 --- Regulation of nERs by ovarian paracrine growth factors (EGF and IGF-I) --- p.112 / Chapter 6.3.5 --- Role of cAMP in nER regulation --- p.113 / Chapter 6.3.6 --- Role of PKA in nER regulation --- p.113 / Chapter 6.4 --- Discussion --- p.114 / Chapter 6.5 --- Figure legends --- p.119 / Chapter 6.6 --- Figures --- p.121 / Chapter Chapter 7 --- Estrogenic Action Mechanisms of Bisphenol A / Chapter 7.1 --- Introduction --- p.127 / Chapter 7.2 --- Materials and methods / Chapter 7.2.1 --- Animals --- p.129 / Chapter 7.2.2 --- Hormones and chemicals --- p.129 / Chapter 7.2.3 --- Primary cell culture and drug treatment --- p.129 / Chapter 7.2.4 --- Total RNA extraction and real-time qPCR --- p.129 / Chapter 7.2.5 --- Statistical analysis --- p.130 / Chapter 7.3 --- Results / Chapter 7.3.1 --- Expression of fshr and lhcgr interfered by BPA --- p.130 / Chapter 7.3.2 --- Signaling mechanism of BPA-induced lhcgr up-regulation --- p.130 / Chapter 7.3.3 --- Dependence of transcription and translation in BPA-induced lhcgr expression --- p.131 / Chapter 7.3.4 --- Evidence for the involvement of nuclear estrogen receptors in the BPA actions --- p.131 / Chapter 7.3.5 --- Interference on E2-induced lhcgr expression by BPA --- p.131 / Chapter 7.4 --- Discussion --- p.132 / Chapter 7.5 --- Figure legends --- p.136 / Chapter 7.6 --- Figures --- p.138 / Chapter Chapter 8: --- General Discussion / Chapter 8.1 --- Estradiol as a differential regulator of gonadotropin receptors --- p.143 / Chapter 8.2 --- Conserved role of estradiol with differential action mechanisms in lhcgr regulation of mammals and teleosts --- p.144 / Chapter 8.3 --- Involvement of classical estrogen receptors that are likely located on the plasma membrane --- p.145 / Chapter 8.4 --- Biphasic response of lhcgr to estradiol and the underlying signal transduction mechanisms --- p.145 / Chapter 8.5 --- Desensitization of follicle cells to gonadotropins by hCG --- p.146 / Chapter 8.6 --- Paracrine control of gonadotropin receptors by ovarian growth factors --- p.147 / Chapter 8.7 --- Interaction of the estrogen action with other endocrine and paracrine signals --- p.148 / Chapter 8.8 --- Action mechanism studies of an endocrine-disrupting chemical: bisphenol A --- p.150 / Chapter 8.9 --- Conclusion --- p.151 / Chapter 8.10 --- Figure legends --- p.153 / Chapter 8.11 --- Figures --- p.155 / References --- p.159
98

Stress state-dependent noradrenergic modulation of corticotropin-releasing hormone neuron excitability in the hypothalamic paraventricular nucleus

January 2014 (has links)
The stress response is an evolutionarily conserved mechanism critical for survival that requires orchestration of different systems in the body. Corticotropin-releasing hormone (CRH) neurons of the hypothalamic paraventricular nucleus (PVN) represent the final common pathway leading to HPA axis activation in response to stress. Noradrenergic inputs to CRH neurons in the PVN provide a powerful drive to activate the HPA axis. Previous anatomical studies have shown that noradrenergic afferents synapse directly on CRH neurons, but electrophysiological analyses indicate that the noradrenergic activation of CRH neurons is mediated primarily by the stimulation of presynaptic glutamatergic neurons. Here, using whole cell patch clamp recordings in identified CRH neurons, I demonstrate that norepinephrine (NE) stimulates excitatory synaptic inputs by activating postsynaptic α1 adrenergic receptors in CRH neurons and inducing the release of the retrograde messenger nitric oxide, which drives upstream glutamate neurons to elicit spike-dependent synaptic glutamate release onto the CRH neurons. Notably, the NE effect is dependent on ATP transmission and astrocytic function, suggesting that astrocytes serve as an intermediary in the retrograde activation of glutamateregic synaptic inputs to the CRH neurons. In addition, I also show that the NE-induced excitation of CRH neurons is stress-status sensitive and corticosterone dependent, in that stress-induced corticosterone causes internalization of membrane α1 adrenergic receptors to desensitize the CRH neurons to NE. Taken together, my findings provide evidence that NE excites CRH neurons in a stress state-dependent manner by a retrograde NO stimulation of local glutamate circuits that is dependent on glial activation. This retrograde trans-neuronal-glial regulation of excitatory synaptic inputs to CRH neurons by NE provides a mechanism for the NE activation of the HPA axis in the early stage of stress response. The stress-/corticosterone-induced desensitization of CRH neurons to NE modulation by the internalization of α1 adrenergic receptors confers a stress state-dependent resistance of the CRH neurons to repeated noradrenergic activation, which provides a mechanism for the negative feedback regulation of the CRH neurons and the HPA axis by stress and glucocorticoids, and a means to restore neuroendocrine homeostasis after stress exposure. / acase@tulane.edu
99

The influence of season on preovulatory events associated with estrus synchronization in dwarf goats raised in Quebec /

Pierson, Janice. January 2000 (has links)
No description available.
100

Involvement of NF-kB subunit p65 and retinoic acid receptors RARæ and RXRæ in the transcriptional regulation of the human GnRH II gene

Leung, Kin-yue. January 2005 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.

Page generated in 0.0669 seconds