• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relish and the Regulation of Antimicrobial Peptides in <i>Drosophila melanogaster</i>

Hedengren Olcott, Marika January 2004 (has links)
<p>The fruit fly <i>Drosophila melanogaster</i> has been a powerful model system in which to study the immune response. When microorganisms breach the mechanical barrier of the insect, phagocytosing cells and a battery of induced antimicrobial molecules rapidly attack them. These antimicrobial peptides can reach micromolar concentrations within a few hours. This immediate response is reminiscent of the mammalian innate immune response and utilizes transcription factors of the NF-κB family. </p><p>We have generated loss-of-function mutants of the NF-κB-like transcription factor Relish in order to investigate Relish's role in the <i>Drosophila</i> immune response to microbes. Relish mutant flies have a severely impaired immune response to Gram-negative (G<sup>-</sup>) bacteria and some Gram-positive (G<sup>+</sup>) bacteria and fungi and succumb to an otherwise harmless infection. The main reason for the high susceptibility to infection is that these mutant flies fail to induce the antimicrobial peptide genes. The cellular responses appear to be normal. </p><p>Relish is retained in the cytoplasm in an inactive state. We designed a set of expression plasmids to investigate the requirements for activation of Relish in a hemocyte cell line after stimulation with bacterial lipopolysaccharide. Signal-induced phosphorylation of Relish followed by endoproteolytic processing at the caspase-like target motif in the linker region released the inhibitory ankyrin-repeat (ANK) domain from the DNA binding Rel homology domain (RHD). Separation from the ANK domain allowed the RHD to move into the nucleus and initiate transcription of target genes like those that encode the inducible antimicrobial peptides, likely by binding to κB-like sites in the promoter region. </p><p>By studying the immune response of the Relish mutant flies in combination with mutants for another NF-κB-like protein, Dorsal-related immunity factor (Dif), we found that the <i>Drosophila</i> immune system can distinguish between various microbes and generate a differential response by activating the Toll/Dif and Imd/Relish pathways. The recognition of foreign microorganisms is believed to occur through pattern recognition receptors (PRRs) that have affinity for selective pathogen-associated molecular patterns (PAMPs). We found that the <i>Drosophila</i> PRRs can recognize G<sup>-</sup> bacteria as a group. Interestingly, the PRRs are specific enough to distinguish between peptidoglycans from G<sup>+</sup> bacteria such as <i>Micrococcus luteus</i> and <i>Bacillus megaterium </i>and fungal PAMPs from <i>Beauveria bassiana</i> and <i>Geotrichum candidum</i>. </p><p>This thesis also investigates the expression of the antimicrobial peptide genes, <i>Diptericin B</i> and <i>Attacin C</i>, and the putative intracellular antimicrobial peptide gene <i>Attacin D</i>, and explores a potential evolutionary link between them.</p>
2

Relish and the Regulation of Antimicrobial Peptides in Drosophila melanogaster

Hedengren Olcott, Marika January 2004 (has links)
The fruit fly Drosophila melanogaster has been a powerful model system in which to study the immune response. When microorganisms breach the mechanical barrier of the insect, phagocytosing cells and a battery of induced antimicrobial molecules rapidly attack them. These antimicrobial peptides can reach micromolar concentrations within a few hours. This immediate response is reminiscent of the mammalian innate immune response and utilizes transcription factors of the NF-κB family. We have generated loss-of-function mutants of the NF-κB-like transcription factor Relish in order to investigate Relish's role in the Drosophila immune response to microbes. Relish mutant flies have a severely impaired immune response to Gram-negative (G-) bacteria and some Gram-positive (G+) bacteria and fungi and succumb to an otherwise harmless infection. The main reason for the high susceptibility to infection is that these mutant flies fail to induce the antimicrobial peptide genes. The cellular responses appear to be normal. Relish is retained in the cytoplasm in an inactive state. We designed a set of expression plasmids to investigate the requirements for activation of Relish in a hemocyte cell line after stimulation with bacterial lipopolysaccharide. Signal-induced phosphorylation of Relish followed by endoproteolytic processing at the caspase-like target motif in the linker region released the inhibitory ankyrin-repeat (ANK) domain from the DNA binding Rel homology domain (RHD). Separation from the ANK domain allowed the RHD to move into the nucleus and initiate transcription of target genes like those that encode the inducible antimicrobial peptides, likely by binding to κB-like sites in the promoter region. By studying the immune response of the Relish mutant flies in combination with mutants for another NF-κB-like protein, Dorsal-related immunity factor (Dif), we found that the Drosophila immune system can distinguish between various microbes and generate a differential response by activating the Toll/Dif and Imd/Relish pathways. The recognition of foreign microorganisms is believed to occur through pattern recognition receptors (PRRs) that have affinity for selective pathogen-associated molecular patterns (PAMPs). We found that the Drosophila PRRs can recognize G- bacteria as a group. Interestingly, the PRRs are specific enough to distinguish between peptidoglycans from G+ bacteria such as Micrococcus luteus and Bacillus megaterium and fungal PAMPs from Beauveria bassiana and Geotrichum candidum. This thesis also investigates the expression of the antimicrobial peptide genes, Diptericin B and Attacin C, and the putative intracellular antimicrobial peptide gene Attacin D, and explores a potential evolutionary link between them.
3

Peptidoglycan recognition proteins in Drosophila melanogaster

Werner, Thomas January 2004 (has links)
The fruit fly Drosophila melanogaster is an excellent model organism to study the innate immune response, because insects and mammals share conserved features regarding the recognition and destruction of microorganisms and Drosophila is easily accessible to genetic manipulation. In my present study, I identified a new family of pattern recognition molecules for bacterial peptidoglycan in Drosophila, the Peptidoglycan Recognition Proteins (PGRP). This family of proteins is widespread in the animal kingdom, for instance there are 4 PGRP genes in humans with unknown function. So far, all tested PGRPs (from insects and mammals) have been shown to bind peptidoglycan. In Drosophila, we found and characterized 13 PGRP genes, which fall into two classes: Short PGRPs and Long PGRPs. To the short group belong PGRP-SA, SB1, SB2, SC1A, SC1B, SC2, and SD with short transcripts and predicted extracellular proteins. The long members are PGRP-LA, LB, LC, LD, LE, and LF with long transcripts and predicted intracellular and membrane spanning proteins. Transcripts from the 13 different PGRP genes are present in immune competent organs, and the majority are inducible by infection. The transcriptional regulation of the inducible PGRP genes occurs either via the imd/Relish or in some cases Toll/Dif pathway. My RNAi experiments in mbn-2 cells revealed that the peptidoglycan recognition protein PGRP-LC is a major activator of the imd/Relish pathway. In PGRP-LC deficient mbn-2 cells, Relish signalling is almost entirely blocked. However, the complex PGRP-LC gene generates three alternative splice forms, each of them carrying one of three possible PGRP domains, LCx, LCy, and LCa. I found that in the tissue culture system PGRP-LCa plays a specific role in the recognition of Gram-negative bacteria, while PGRP-LCx is crucial for the recognition of Gram-positive and Gram-negative bacteria, and peptidoglycan. Targeted mutagenesis of the PGRP-LCa isoform in vivo shows that the situation is more complicated than in the cell culture experiments. In conclusion, PGRPs constitute a highly diversified family of proteins, including key players of the innate immune response.

Page generated in 0.0186 seconds