Spelling suggestions: "subject:"removal."" "subject:"emoval.""
221 |
Remoção biológica do nitrogênio pela via curta de lixiviado de aterro sanitário operando um reator em bateladas sequenciais (SBR). / Biological Nitrogen removal through nitritation of landfill leachate operating a sequencing batch reactor (SBR).Diego Domingos da Silva 15 May 2009 (has links)
O presente trabalho avaliou a remoção do nitrogênio amoniacal de liquido percolado de aterro sanitário através do processo de nitritação/desnitritação (via curta) utilizando a própria matéria orgânica presente no lixiviado como fonte de carbono para o processo de desnitritação. Foi também avaliada a remoção de nitrogênio amoniacal do lixiviado através do processo de stripping de amônia. Para o processo de stripping foram utilizados dois sistemas, o primeiro era constituído por um reator (R-2) com volume útil de 20L mantido sobre agitação mecânica (palheta) e o segundo era composto de uma coluna cilíndrica, com volume de lixiviado de 10L, mantida sob aeração. Além da remoção de nitrogênio houve também uma diminuição na concentração de DQO, DBO e COT durante os ciclos de stripping. A taxa volumétrica de remoção de amônia durante os ciclos de stripping variou entre 78 e 86,95 mg N-NH3/L.dia. Para a avaliação da remoção de nitrogênio através da via curta (via nitrito), foi utilizado um reator operado em bateladas seqüenciais (SBR- 1) com volume útil de 20 L. O reator foi operado por um período de aproximadamente 1 ano. A avaliação do processo de nitritação/desnitritação se deu em 4 fases distintas; na primeira fase o sistema foi alimentado com 2L de lixiviado bruto, na segunda fase o sistema R-1 foi alimentado com lixiviado pré tratado (NNH3lixiviado @ 1200 mg/L), na fase três o sistema foi também alimentado com 2 L de percolado pré-tratado (N-NH3lixiviado @ 900 mg/L) e por fim, na fase 4 o sistema foi alimentado com 4L de lixiviado pré-tratado (N-NH3lixiviado @ 900 mg/L ). Nas duas primeiras fases da pesquisa a remoção de nitrogênio foi relativamente eficiente, variando entre 80 e 90%, porém mesmo com a concentração de amônia livre variando entre 0,18 e 20,7 mg/L não houve a inibição da nitratação durante a etapa aerada dos ciclos de tratamento. Durante as fases 1 e 2, a fase anóxica foi relativamente longa sendo que, as taxas específicas de desnitritação variaram entre 0,0100 e 0,0148 Kg NO3 -, NO2 -/ Kg SSV.dia. Na fase 3, após a mudança na alimentação do sistema, o reator R-1 entrou em regime de equilíbrio e a inibição da nitratação foi praticamente total (acima de 95%). Mesmo com a completa inibição da nitratação, a etapa anóxica durante os ciclos de tratamento da fase 3 continuou sendo relativamente longa (72 h em média) remetendo assim, a uma falta de matéria orgânica para a redução do nitrito durante a fase anóxica. Na fase 4, apesar da não inibição da nitratação durante os primeiros ciclos, nos ciclos que se seguiram a inibição foi quase total, demonstrando claramente a adaptação do sistema às condições necessárias ao acúmulo de nitrito. A manutenção do pH da massa líquida próximo a 8,3 foi determinante para o acúmulo de nitrito durante todas as fases da pesquisa. Nas fases 1 e 2 houve a necessidade de controle do pH com adição de alcalinizante, já nas fases 3 e 4 esse controle não foi necessário. / The present work evaluates the biological ammonia removal of a landfill leachate, through nitritation/denitritation as well as the utilization of the organic compounds present in the landfill leachate, as carbon source to denitritation process. It also evaluates the ammonia removal of landfill leachate by the ammonia stripping process. It has been used two systems for the stripping process, the first one was constituted of a reactor (R-2) with 20L useful volume kept on mechanical shaking (vane) and the second one was composed of a cylindrical column, with a 10L of landfill leachate volume, kept on aeration. Beyond the biological ammonia removal it also had a reduction in the COD, BOD and TOC concentration during the stripping cycles. The ammonia removal volumetric rate during the stripping cycles have varied between 78 e 86,95 mg N-NH3/L.day. In order to evaluate the ammonia removal through the short cut (via nitrite) one has used a sequencing batch reactor (SBR-1) with a 20L useful volume. The reactor was been operated by a period of approximately 1 year. The assessment of nitritation/denitritation process has happened in 4 distinct phases: in the first one the system was fed on 2L of heavy landfill leachate; in the second the system R-1 was fed on pre-treated landfill leachate (N-NH3leachate @ 1200 mg/L); in the third phase the system was also fed on 2L of pre-treated landfill leachate (N-NH3leachate @ 900 mg/L); and finally, in the fourth phase it was fed on 4L of pre-treated landfill leachate (N-NH3leachate @ 900 mg/L). In the two first phases of this research the biological ammonia removal was been relatively efficient, varying between 80 and 90%, however, even with the free ammonia varying between 0,18 and 20,70 mg/L, it has not had nitratation inhibition during the aerated stage of the treatment cycles. During phases 1 and 2 the anoxic phase was relatively long and specific denitritation rates have varied between 0,0100 and 0,0148 Kg NO3 -, NO2 -/ Kg VSS.day. In phase 3, after the change of system feeding, the R-1 reactor has entered in balance regime and the nitratation inhibition has been practically total (above 95%). Even with the complete nitratation inhibition, the anoxic phase during the phase 3 treatment cycles have continued being relatively long (72h on average), thus sending to a lack of organic compounds for the nitrite reduction in this phase. In phase 4, although the not inhibition of nitratation during the first cycles, in the followed cycles the inhibition has been almost total, demonstrating clearly the system adaptation to the necessary conditions to the nitrite accumulation. The maintenance of pH of liquid mass next to 8,3 has been determinative for the accumulation of nitrite during all phases of this research. In phases 1 and 2 it have been necessary to control the pH alkalinizing the system, already in phases 3 and 4 this control has not been necessary.
|
222 |
Avaliação do potencial de uso do metano como doador de elétrons para a desnitrificação em reator anóxico horizontal de leito fixo / Potential of methane utilization as electron donor for denitrification in horizontal flow fixed bed anoxic reactorCuba, Renata Medici Frayne 24 March 2005 (has links)
A presente dissertação apresenta e discute os resultados do trabalho experimental cujo objetivo foi avaliar a remoção de nitrogênio na forma de mitrato (N-NO3-) pelo processo de desnitrificação biológica em reator anóxico horizontal de leito fixo (RAHLF) contendo matrizes de espuma de poliuretano, em escala de laboratório, utilizando gás metano como fonte de carbono e único doador de elétrons adicionado ao sistema. Para concentrações iniciais de N-NO3- de 20 mg/L e 40 mg/L no substrato sintético, foi possível obter diminuição das concentrações iniciais em 85% e 50%. No entanto, os altos níveis de redução de N-NO3-, obtidos sob condições limitantes de metano, deram suporte à hipótese de que parte da remoção do N-NO3- foi realizada mediante a utilização de compostos reduzidos de enxofre ou nitrogênio, tais como: S0, HS- ou NH4+, provavelmente formados sob condições anóxicas, simultaneamente com o processo de desnitrificação. Foi possível verificar, também, a influência da relação carbono (mg/L CH4 / nitrogênio (mg/L N-NO3-) no estabelecimento das rotas metabólicas de desnitrificação predominantes, quais sejam, a redução dissimilativa do nitrogênio à amônia (RDNA) ou a desnitrificação. Adicionalmente, foram realizados ensaios em reatores tipo batelada, com o objetivo de se medir o consumo de metano. Porém, os resultados não foram satisfatórios, provavelmente em razão da diversidade microbiana presente no inóculo. Foram realizadas análises de microscopia óptica e de fluorescência, assim como de DGGE, para avaliar a diversidade e as alterações nas populações microbianas ao longo do RAHLF e do tempo de experimento. Os diferentes sistemas utilizados apresentaram limitações relacionadas à baixa solubilidade do gás metano no meio líquido, à resistência à transferência de massa da fase gasosa para a líquida e desta última para a biomassa aderida à espuma. / This study presents and discusses experimental work results conducted with the purpose of evaluating nitrate - nitrogen (N-NO3-) removal by biological denitrification process in a lab scale horizontal flow fixed bed anoxic reactor (RAHLF), using methane gas as sole carbon source and electron donor. Support media for microorganisms were polyurethane foam matrixes. For initial N-NO3- concentrations of 20 mg/L and 40 mg/L present in synthetic substrate, it was possible to obtain 85% and 50% removal respectively. These high reduction rates, obtained under limiting conditions of methane, sustained the idea of part of the N-NO3- removal being accomplished by reductive sulfur or nitrogen species utilization, such as: S0, HS- or NH4+, probably formed under anoxic conditions simultaneously to denitrification process. It was possible to verify also carbon (mg/L CH4) / nitrogen (mg/L N-NO3-) ratio effect in denitrification metabolic paths establishment, i.e. dissimilative reduction of nitrogen to ammonia or denitrification itself. In addition, batch tests where conducted with methane consumption measuring purpose. Yet, results where not satisfactory probably due to great microbial diversity present in inoculum. Optical microscopy and fluorescence exams where developed, as well as, DGGE, in order to evaluate diversity and alterations in bacterial populations as a function of reactor\'s length and time. Different systems used in experimental work presented limitations due to low methane gas solubility in bulk liquid and mass transfer resistance from gas to liquid phase and from this to fixed biomass.
|
223 |
Shadow Patching: Exemplar-Based Shadow RemovalHintze, Ryan Sears 01 December 2017 (has links)
Shadow removal is an important problem for both artists and algorithms. Previous methods handle some shadows well but, because they rely on the shadowed data, perform poorly in cases with severe degradation. Image-completion algorithms can completely replace severely degraded shadowed regions, and perform well with smaller-scale textures, but often fail to reproduce larger-scale macrostructure that may still be visible in the shadowed region. This paper provides a general framework that leverages degraded (e.g., shadowed) data to guide the image completion process by extending the objective function commonly used in current state-of-the-art image completion energy-minimization methods. This approach achieves realistic shadow removal even in cases of severe degradation and could be extended to other types of localized degradation.
|
224 |
2D signal processing: efficient models for spectral compressive sensing & single image reflection suppressionYang, Yang 01 December 2018 (has links)
Two efficient models in two-dimensional signal processing are proposed in the thesis.
The first model deals with large scale spectral compressive sensing in continuous domain, which aims to recover a 2D spectrally sparse signal from partially observed time samples. The signal is assumed to be a superposition of s complex sinusoids. We propose a semidefinite program for the 2D signal recovery problem. Our model is able to handle large scale 2D signals of size 500*500, whereas traditional approaches only handle signals of size around 20*20.
The second model deals with the problem of single image reflection suppression. Removing the undesired reflection from images taken through glass is of great importance in computer vision. It serves as a means to enhance the image quality for aesthetic purposes as well as to preprocess images in machine learning and pattern recognition applications. We propose a convex model to suppress the reflection from a single input image. Our model implies a partial differential equation with gradient thresholding, which is solved efficiently using Discrete Cosine Transform. Extensive experiments on synthetic and real-world images demonstrate that our approach achieves desirable reflection suppression results and dramatically reduces the execution time compared to the state of the art.
|
225 |
Enhancing Multispectral Imagery of Ancient DocumentsGriffiths, Trace A 01 May 2011 (has links)
Multispectral imaging (MSI) provides a wealth of imagery data that, together with modern signal processing techniques, facilitates the enhancement of document images. In this thesis, four topic areas are reviewed and applied to ancient documents. They are image fusion, matched filters, bleed-through removal, and shadow removal. These four areas of focus provide useful tools for papyrologists studying the digital imagery of documents. The results presented form a strong case for the utility of MSI data over the use of a single image captured at any given wavelength of light.
|
226 |
Application of a Floating Membrane Algal Photobioreactor for Freshwater AquacultureShyu, Hsiang-Yang 29 October 2018 (has links)
As the global population grows, water and food demand also increase. The intensive aquaculture industry has helped to mitigate these problems. In order to make aquaculture sustainable, it is necessary to remove the abundant nutrients produced by fish in the water. In this study, the role of the microalga of Chlorella vulgaris in the Isolated Cultivation of Algal Resources Utilizing Selectivity (ICARUS) membrane photobioreactor was evaluated for nutrient control in the aquaculture system. The production of algal biomass, the removal rate of nutrients, and the impact of microalgae on cultured organisms were monitored during the operation of aquaculture systems. At the end of the experiment, the yield of algae in ICARUS was approximately 344 ± 11.3 mg / L. Compared to the control groups, this production of algae is considered to be low. Likely factors were insufficient indoor light intensity, membrane fouling limiting the mass transfer of nutrients, and improvements still needed for the overall ICARUS prototype design. However, ICARUS can efficiently prevent algae from contamination, and provide pure harvest production for food supplement. It was observed that algae have the ability to help stabilize pH and increase dissolved oxygen for the system. However, in high-density, mixed systems, algae may cause physical damage to fish (e.g., clogging of gills). The high ammonia concentrations produced by fish could be controlled by Chlorella vulgaris since this species of algae prefers ammonia to nitrate. In conjunction with algal growth, aquaculture systems concentration of ammonia was maintained at 0.90±0.16 mg/L. The integration of ICARUS is not only a potentially sustainable option for aquaculture, but also a multipurpose tool for other types of wastewater treatment. An economic analysis for scale-up of the ICARUS system was performed. In summary, this study aimed to develop a new commercial ICARUS photobioreactor which can serve for different types of wastewater systems with a high algal production efficiency and economic benefits.
|
227 |
Chemoprophylaxis for the prevention of endophthalmitis after cataract surgery: patterns of use and economic costsRosha, Deepinder Singh January 2006 (has links)
Objectives: The objectives of study were to (i) examine the regional differences in methods of performing cataract surgery across different jurisdictions in Australia and New Zealand (ii) identify risk factors for post-operative endophthalmitis and (iii) explore the implication of changes in surgical practice on the number of cases of post-operative endophthalmitis and resultant net cost to health system. Methods: Cataract surgeons across Australia and New Zealand were surveyed about their demographics, surgical techniques, use of pre- and post-operative antibiotics and antiseptics and cases of post-operative endophthalmitis. Statistical analysis was conducted to determine the regional variations in the use of methods of chemoprophylaxis and surgical practices. Multivariate Poisson regression was performed to identify factors associated with the incidence of post-operative endophthalmitis. A cost analysis was conducted to determine the impact of an increased use of chemoprophylatic treatment on the number of cases of post-operative endophthalmitis and net cost savings to the health system from its use. In addition, the results of the current survey of surgical practices of cataract surgeons was compared with those from an earlier survey conducted approximately 10 years ago. Result: The response to the survey of ophthalmologists was 82%, but after excluding ophthalmologists who did little or no cataract surgery, the study sample comprised 540 participants of the 896 who were initially sent the survey. Participating cataract surgeons reported 162,120 cataract surgeries and 92 cases of post-operative endophthalmitis, an incidence rate of 0.056%. Regional variations were found in the methods of chemoprophylaxis and surgical techniques. / Chloramphenicol was the most frequently used topical antibiotic in Australia, while neomycin was used by majority of cataract surgeons in New Zealand. The only notable change found over the past decade was a sharp fall in use of subconjunctival antibiotics from 75% to 45% in the current survey. A slight increase in use of post-operative topical antibiotics was noticed. Subconjunctival injection of antibiotics was the only form of chemoprophylaxis associated with a reduction in incidence of endophthalmitis. Results from this survey indicated that cataract surgeons routinely using corneal or limbal incisions had an incidence of endophthalmitis considerably higher than those surgeons routinely using scleral wounds, whilst surgeons routinely using temporally sited wounds had almost half the incidence of endophthalmitis compared to surgeons using superior wounds. The cost implications of subconjunctival gentamycin injection for chemoprophylaxis were examined. Additional costs of subconjunctival antibiotics were subtracted from the reduced cost of treating fewer cases endophthalmitis. There would potentially be a net saving to the Australian health system of $ 110,354 if all cataract surgeons used subconjunctival chemoprophylaxis. Conclusion: Regional variation in chemoprophylaxis and surgical techniques did not entirely explain differences in post-operative endophthalmitis incidence. Subconjunctival antibiotics would only need to reduce the incidence of endophthalmitis by 15% for it to be cost-effective.
|
228 |
Removal of ammonia from drinking water by biological nitrification in a fixed film reactorvan den Akker, Ben, ben.vandenakker@flinders.edu.au January 2008 (has links)
The absence of water catchment protection often results in contamination of drinking water supplies. Waters in South East Asia have been exploited to support extensive agriculture, industry, power generation, public water supply, fisheries and recreation use. Ammonia has been identified as a significant contaminant of drinking water because of its ability to affect the disinfection efficiency of chlorine. The interference of ammonia with chlorination is a prevalent and expensive problem faced by many water treatment plants (WTPs) located throughout South East Asia. The conventional approach for ammonia removal was to pre-chlorinate using high concentrations of chlorine, which has a number of disadvantages including the formation of disinfection by-products and high chlorine consumption.
This thesis investigated the application of high rate nitrifying trickling filters (NTFs) as a means of ammonia removal from a polluted lowland water source as an alternative to pre-chlorination. NTFs are widely used for the biological remediation of ammonia rich wastewater, however their performance when required to operate under low ammonia concentrations for potable water applications was unknown.
A NTF pilot facility consisting of one large-scale, and three small-scale NTFs were constructed at Hope Valley WTP in South Australia. The NTFs were operated to simulate the raw water quality of a polluted catchment identified in Indonesia (Buaran WTP), including variations in ammonia, biological oxygen demand (BOD5), and turbidity. Results confirmed that plastic-packed NTFs were able to operate equally successfully under low ammonia-N concentrations, some 10- to 50-fold lower that that of conventional wastewater applications, where complete conversion of ammonia to nitrate was consistently observed under these markedly reduced loadings. Results also showed that when operated under mass loads equivalent to typical ammonia loading criteria for wastewater NTFs, by increasing hydraulic flow¬, comparable apparent nitrification rates were achieved. These results confirmed that mass transport limitations posed by low ammonia-N concentrations on overall filter performance were insignificant.
This thesis also investigated the impact of organic carbon quantity and biodegradability on the nitrification behaviour of the pilot NTF. Results demonstrated that organic carbon loading, rather than the C:N ratio, was an important regulator of filter nitrification capacity, where a linear decline in nitrification performance correlated well with sucrose and methanol augmented carbon loads. Extensive monitoring of inorganic nitrogen species down the NTF, to profile nitrification behaviour, showed sucrose-induced carbon loads greater than 870 mg sBOD5 m2 d1 severely suppressed nitrification throughout the entire filter bed. This study also confirmed that critical carbon loads for nitrification varied among carbon sources. In contrast to sucrose, when a more native-like carbon source was dosed (organic fertiliser), no significant decline in nitrification capacity was observed. This could be attributed to differences in carbon biodegradability.
This research has provided new insights into the microbial ecology of a potable water NTF. The combination of fluorescent in situ hybridisation (FISH) and scanning electron microscopy (SEM) for in situ analysis of biofilms was successful in identifying the spatial distribution of ammonia oxidising bacteria (AOB), nitrite oxidising bacteria (NOB) and heterotrophs. When the NTF was operated under low organic loads, clusters of AOB and NOB were abundant, and were located in close proximity to each other. Uniquely, the study identified not only Nitrospira spp but also the less common Nitrobacter spp within the NTF biofilm. Biofilm analysis showed that the type of carbon source also strongly influenced the biofilms characteristics in terms of biomass ecology, morphology, and polysaccharide composition, which was correlated with NTF performance. Results showed that an increase in sBOD5 via the addition of sucrose promoted the rapid growth of filamentous heterotrophic bacteria and production of large amounts of polysaccharide. Stratification of nitrifiers and heterotrophs, and high biofilm polysaccharide concentrations were observed at all filter bed depths, which coincided with the impediment of nitrification throughout the entire filter column. High biofilm polysaccharide concentrations also coincided with a significant increase (40 %) in filter hydraulic retention time, as determined by hydraulic tracer experiments. In contrast to sucrose-fed biofilms, organic fertiliser-fed biofilms had a more uniform and dense ultra-structure dominated by many rod shaped bacteria, and was significantly lower in polysaccharide composition. This observation was coupled with superior nitrification performance.
This study confirmed that a well functioning NTF is a viable, low cost alternative for ammonia removal from source water abstracted from poorly protected catchments found in many developing countries. Pre-treatment using NTFs has the potential to reduce the chlorine dose required for pre-chlorination. Thereby improving water quality by minimising the formation of disinfection by-products, and improving the control of chlorination. NTFs could also find ready application in other situations where ammonia interferes with chlorine disinfection.
|
229 |
POLISHING OF POLYCRYSTALLINE DIAMOND COMPOSITESCHEN, Yiqing January 2007 (has links)
Doctor of Philosophy (PhD) / This thesis aims to establish a sound scientific methodology for the effective and efficient polishing of thermally stable PCD composites (consisting of diamond and SiC) for cutting tools applications. The surface roughness of industrial PCD cutting tools, 0.06 μm Ra is currently achieved by mechanical polishing which is time consuming and costly because it takes about three hours to polish a 12.7 mm diameter PCD surface. An alternative technique, dynamic friction polishing (DFP) which utilizes the thermo-chemical reactions between the PCD surfaces and a catalytic metal disk rotating at high peripheral speed has been comprehensively investigated for highly efficient abrasive-free polishing of PCD composites. A special polishing machine was designed and manufactured in-house to carry out the DFP of PCD composites efficiently and in a controllable manner according to the requirements of DFP. The PCD polishing process and material removal mechanism were comprehensively investigated by using a combination of the various characterization techniques: optical microscopy, SEM and EDX, AFM, XRD, Raman spectroscopy, TEM, STEM and EELS, etc. A theoretical model was developed to predict temperature rise at the interface of the polishing disk and PCD asperities. On-line temperature measurements were carried out to determine subsurface temperatures for a range of polishing conditions. A method was also developed to extrapolate these measured temperatures to the PCD surface, which were compared with the theoretical results. The material removal mechanism was further explored by theoretical study of the interface reactions under these polishing conditions, with particular emphasis on temperature, contact with catalytic metals and polishing environment. Based on the experimental results and theoretical analyses, the material removal mechanism of dynamic friction polishing can be described as follows: conversion of diamond into non-diamond carbon takes place due to the frictional heating and the interaction of diamond with catalyst metal disk; then a part of the transformed material is detached from the PCD surface as it is weakly bonded; another part of the non-diamond carbon oxidizes and escapes as CO or CO2 gas and the rest diffuses into the metal disk. Meanwhile, another component of PCD, SiC also chemically reacted and transformed to amorphous silicon oxide/carbide, which is then mechanically or chemically removed. Finally an attempt was made to optimise the polishing process by investigating the effect of polishing parameters on material removal rate, surface characteristics and cracking /fracture of PCD to achieve the surface roughness requirement. It was found that combining dynamic friction polishing and mechanical abrasive polishing, a very high polishing rate and good quality surface could be obtained. The final surface roughness could be reduced to 50 nm Ra for two types of PCD specimens considered from pre-polishing value of 0.7 or 1.5 μm Ra. The polishing time required was 18 minutes, a ten fold reduction compared with the mechanical abrasive polishing currently used in industry.
|
230 |
Natural Organics Removal using MembranesSch??fer, Andrea Iris, Chemical Engineering & Industrial Chemistry, UNSW January 1999 (has links)
Membrane processes are increasingly used in water treatment. Experiments were performed using stirred cell equipment, polymeric membranes and synthetic surface water containing natural organics, inorganic colloids and their aggregates, and cations. All processes could remove a significant amount of natural organics. Pretreatment with ferric chloride was required to achieve significant organic removal with MF and high MWCO UF. Additionally, fouling mechanisms for the three processes were investigated. Crucial parameters were aggregate characteristics (fractal structure, stability, organic-colloid interactions), solubility of organics and calcium, and hydrodynamics. In MF, fouling by pore plugging was most severe. Variations in solution chemistry changed the aggregation state of the colloids and/or natural organic matter and dramatically affected rejection and fouling behaviour. UF membrane fouling was mainly influenced by pore adsorption and could improve natural organics rejection significantly. Coagulant addition shifted fouling mechanism from pore adsorption to cake formation. Aggregate structure was most significant for flux decline. In NF, rejection of natural organics involved both size and charge exclusion. Fouling was caused by precipitation of a calcium-organic complex. Fouling could be avoided by pretreatment with metal salt coagulants. Thorough chemical characterisation of the organics used demonstrated that only size and aromaticity can be related to fouling. The study is concluded with a process comparison based on a water quality parameter and a cost comparison. Treatment cost of microfiltration with chemical pretreatment was similar to that of nanofiltration at a comparable natural organics rejection.
|
Page generated in 0.0406 seconds