Spelling suggestions: "subject:"rendezvous d'agents."" "subject:"rendezous d'agents.""
1 |
Coordination et planification de systèmes multi-agents dans un environnement manufacturier / Coordination and motion planning of multi-agent systems in manufacturing environmentDemesure, Guillaume 08 December 2016 (has links)
Cette thèse porte sur la navigation d'agents dans un environnement manufacturier. Le cadre général du travail relève de la navigation d'AGVs (véhicules autoguidés), transportant librement et intelligemment leur produit. L'objectif est de proposer des outils permettant la navigation autonome et coopérative d’une flotte d’AGVs dans des systèmes de production manufacturiers où les contraintes temporelles sont importantes. Après la présentation d'un état de l'art sur chaque domaine (systèmes manufacturiers et navigation d'agents), les impacts de la mutualisation entre ceux-ci sont présentés. Ensuite, deux problématiques, liées à la navigation d'agents mobiles dans des environnements manufacturiers, sont étudiées. La première problématique est centrée sur la planification de trajectoire décentralisée où une fonction d'ordonnancement est combinée au planificateur pour chaque agent. Cette fonction permet de choisir une ressource lors de la navigation afin d'achever l'opération du produit transporté le plus tôt possible. La première solution consiste en une architecture hétérarchique où les AGVs doivent planifier (ou mettre à jour) leur trajectoire, ordonnancer leur produit pour l'opération en cours et résoudre leurs propres conflits avec les agents à portée de communication. Pour la seconde approche, une architecture hybride à l'aide d'un superviseur, permettant d'assister les agents durant leur navigation, est proposée. L'algorithme de planification de trajectoire se fait en deux étapes. La première étape utilise des informations globales fournies par le superviseur pour anticiper les collisions. La seconde étape, plus locale, utilise les données par rapport aux AGVs à portée de communication afin d'assurer l'évitement de collisions. Afin de réduire les temps de calcul des trajectoires, une optimisation par essaims particulaires est introduite. La seconde problématique se focalise sur la commande coopérative permettant un rendez-vous d'agents non holonomes à une configuration spécifique. Ce rendez-vous doit être atteint en un temps donné par un cahier des charges, fourni par le haut-niveau de contrôle. Pour résoudre ce problème de rendez-vous, nous proposons une loi de commande à temps fixe (i.e. indépendant des conditions initiales) par commutation permettant de faire converger l’état des AGVs vers une resource. Des résultats numériques et expérimentaux sont fournis afin de montrer la faisabilité des solutions proposées. / This thesis is focused on agent navigation in a manufacturing environment. The proposed framework deals with the navigation of AGVs (Automated Guided Vehicles), which freely and smartly transport their product. The objective is to propose some tools allowing the autonomous and cooperative navigation of AGV fleets in manufacturing systems for which temporal constraints are important. After presenting the state of the art of each field (manufacturing systems and agent navigation), the impacts of the cross-fertilization between these two fields are presented. Then, two issues, related to the navigation of mobile agents in manufacturing systems, are studied. The first issue focuses on decentralized motion planning where a scheduling function is combined with the planner for each agent. This function allows choosing a resource during the navigation to complete the ongoing operation of the transported product at the soonest date. The first proposed approach consists in a heterarchical architecture where the AGVs have to plan (or update) their trajectory, schedule their product and solve their own conflict with communicating agents. For the second approach, hybrid architecture with a supervisor, which assists agents during the navigation, is proposed. The motion planning scheme is divided into two steps. The first step uses global information provided by the supervisor to anticipate the future collisions. The second step is local and uses information from communicating agents to ensure the collision avoidance. In order to reduce the computational times, a particle swarm optimization is introduced. The second issue is focused on the cooperative control, allowing a rendezvous of nonholomic agents at a specific configuration. This rendezvous must be achieved in a prescribed time, provided by the higher level of control. To solve this rendezvous, a fixed time (i.e. independent of initial conditions) switching control law is proposed, allowing the convergence of agent states towards a resource configuration. Some numerical and experimental results are provided to show the feasibility of the proposed methods.
|
Page generated in 0.0541 seconds