• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1154
  • 270
  • 103
  • 74
  • 68
  • 58
  • 47
  • 40
  • 25
  • 14
  • 13
  • 11
  • 10
  • 9
  • 8
  • Tagged with
  • 2281
  • 2281
  • 724
  • 568
  • 456
  • 322
  • 282
  • 263
  • 253
  • 248
  • 240
  • 211
  • 194
  • 177
  • 171
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

Vliv schválení srážkové daně na fotovoltaický projekty v ČR / The impact of additional taxation on photovoltaic projects in the Czech Republic

Zejval, Tomáš January 2011 (has links)
The master thesis is concerned with the problems of the impact of additional taxation on economy and effectiveness of photovoltaic projects in the Czech Republic. Additional taxation applies to revenues coming from selling the electricity made by photovoltaic power plants between 2011 and 2013. The first part describes the theoretical factors influencing the methods of assessing the effectiveness of the investment project. At the beginning of the second part, the legislative background of renewable energy projects in the Czech Republic is described. All the factors influencing the effectiveness of the photovoltaic projects are reviewed; followed by the discussion of methods for assessing the effectiveness of the photovoltaic projects. At the end of the thesis the impact of additional taxation on the effectiveness of photovoltaic projects is assessed and compared between different sizes of projects.
472

Projektové financovanie v oblasti obnovitelných zdrojov energie / Project finance renewable energy sources

Minarič, Matúš January 2010 (has links)
Definition of project financing on real project of renewable energy source.
473

Projekt výstavby fotovoltaickej elektrárne / Project of the construction photovoltaic power plant

Mačugová, Radana January 2010 (has links)
The objective of this thesis is to analyze and evaluate the profitability of photovoltaic power plant construction project. The introductory part deals with general characteristics of solar energy and its utilization, with the Slovakian and the European legislation in connection with use of renewable energy resources. The practical part deals with solar energy from the perspective of private firm. One particular company is considering about the implementation of photovoltaic power plant. This section begins with the presentation of the private company and evaluation of its preconditions for this planned construction. The thesis also describes planned implementation of the project, namely its preparation, possibilities of obtaining funds, necessary communication with the public agencies, selection of technology and the construction itself. At the end is project evaluated from the point of profitability by selected indicators.
474

Feasibility of converting a Science Park in a cold climate into an “off-grid” facility using renewable energies and seasonal storage systems

Estaña Garcia, Guillermo, Ruiz Julian, Iñigo January 2019 (has links)
The collateral effects of fossil fuels push humanity to seek solutions to these adversities. Energy efficiency and renewable energies have gone from being almost imaginary concepts to necessary. Several studies have shown that self-sufficiency through photovoltaic systems and wind energy is possible. In addition, it is necessary a storage of the surpluses of both since it increases notably the efficiency of these systems and supposes to the short/medium term a saving of money in the consumer. Due to the mentioned before, the aim of the thesis is to convert a science park located in a cold climate such as Sweden into a complex that does not depend energetically on external sources. For this purpose, a series of data from the park were first collected and then simulated and optimised using the HOMER software for different energy configurations. At the same time, a computer code was created in MatLab to enable the energy produced to be used responsibly. The proposed system consists of PV panels, wind turbines and a battery. Thanks to it, a 64 % renewable fraction is achieved, which means a reduction of 27.45 tons of CO2 per year. In addition, through the energy management system created, the electricity contract is reduced, reducing the purchase of electricity during peak hours. It is concluded that the implementation of both proposed systems contributes significantly to the achievement of the sustainable goals set for 2 030 by the main world leaders, even though a total disconnection with the electrical grid has not been achieved.
475

Methods for assessing the economic viability of stand-alone hybrid renewable energy systems

Lafleur, Charlotte 30 August 2019 (has links)
The addition of renewable energy in a previously diesel-powered off-grid micro-grid results in what is known in the field as a Stand-Alone Hybrid Renewable Energy System (HRES). Such initiative is a near-term target of both federal and provincial governments in Canada. Not only does it reduce environmental hazards like leaks, spills and air pollution, but the combination of renewable energy and fossil fuel generators can increase stability and lower the cost of electricity. It is deemed a crucial step towards a clean energy future, but also a necessity in the reconciliation process with Indigenous Peoples of Canada - many of who inhabit off-grid communities. The addition of renewable energy can greatly increase the independence of a community by reducing reliability on external diesel suppliers and creating job opportunities. To be successful, HRES need to be carefully planned; the variable and uncertain behaviour of natural resources add a level of complexity to the preliminary design stage. Energy systems are therefore simulated and optimized to estimate the lifecycle cost by determining the nature and capacity of their components and their operational strategy. Chapter 2 goes over the preliminary design stage of two HRES in British Columbian communities. Many modelling tools are available, ranging from full-factorial and linear optimization techniques that can solve single-objective problems, to meta-heuristic algorithms. One of the distinctions between different HRES modelling tools is the foresight horizon being used. Linear programming tools commonly have a perfect foresight over the typical year analysed, for both demand and natural resources. This can lead to an overly optimistic prediction of the lifecycle cost of a system when the reality of implementations comes with uncertainties. On the other hand, tools that use myopic foresight, or no knowledge of future parameters, can lead to pessimistic lifecycle cost estimates since the demand and power output of certain renewable energy technologies, like solar panels, can be known within a few hours. The purpose of Chapter 3 of this thesis is to guide readers towards the right tool in the context of energy system modelling for the preliminary design of HRES. It was found that the degree of importance of choosing the appropriate foresight approach is a function of renewable energy penetration, autocorrelation, and storage capacity. A system with a high renewable energy share, a low short-term (few hours) autocorrelation, and an optimal storage size will result in the highest NPC difference between the two methods. When planning for long-term HRES design, the choice of the foresight horizon can either be representative of a lower/upper cost boundary (perfect and myopic foresight respectively) or of the real-time predictability of the power output of the chosen renewable energy power source. The use of energy system modelling tools is often reserved for highly qualified personnel and is therefore costly for prospective communities. To improve community readiness with minimal investment, a simple alternative to energy system modelling is proposed in Chapter 4 for the integration of tidal stream turbines in British Columbia. A series of three logical conditions was demonstrated to inform on the viability of a project in terms of cost reduction in comparison to the business as usual scenario. These conditions were found to also be useful for determining the minimum scale, or the economic break-in scale, for a tidal stream turbine given a remote community. In this context, communities are found to be best described by the local price of diesel fuel as an easily accessible metric to represent the current cost of electricity, their electrical load scale, and the local tidal current resource. Ten British Columbian communities were selected to validate the results by comparing the set of conditions to a complete energy system modelling approach and four were found to reach savings of 10 % or more as compared to the business as usual scenario. The long-term objective of this work is to provide remote communities with an integrated, affordable, and turnkey solution for the displacement of diesel in their energy systems. The next steps in achieving this include augmented optimization tools to quantify and capture non-monetary value so that the modelling and multi-criteria decision-making steps of the design process can be bridged together. / Graduate
476

Grid-Tied Solar Photovoltaic (PV) System with Battery storage : A Brief Techno-Economic Analysis

Basavalingappa, Sharat January 2019 (has links)
Most of the world’s electricity is being generated through conventional sources of energy like coal and nuclear. People are realizing the dire effect of using these fuels, and the amount of CO2 being released into the environment. Therefore, in recent year there has been a shift in emphasis towards cleaner ways of generating electricity. One such recent trend is solar photovoltaics (PV), which has seen rapid growth over the years. This ever-increasing trend of adopting PV system allows consumers to be producers or “Prosumers”. Due to the irregular production capability of solar PV, the need for an energy storage system like a battery bank is on the rise as well. This report evaluates how solar PV can be used in combination with a battery bank to supply the annual electricity demand for a household with little to no support from the grid. The building is assumed to be located in Bangalore, India. The energy demand for the household is estimated based on the requirements of a basic Indian house standard. The size and configuration of each component have been done with regards to the total load demand. Furthermore, the cost of the whole system is estimated in order to evaluate the feasibility of the grid-tied system from an economic perspective. The results show that a PV system consisting of four 270W solar panels, a battery bank of eight150Ah lead-acid batteries and a 48V 4kW inverter is required to meet the annual energy demand of the house. The results show that from a technical standpoint, the above-mentioned technology is feasible. The results from the economic evaluation show that the localized cost of energy(LCOE) for the system is ₹6.01/kWh or € 0.078/kWh or 0.84SEK/kWh and the payback time for the given system is 16.19 years. On the bright side, there are new technological advancements in the PV field every day, which could mean that an energy system of this type can be an achievable and practical alternative. Most of the world’s electricity is being generated through conventional sources of energy like coal and nuclear. People are realizing the dire effect of using these fuels, and the amount of CO2 being released into the environment. Therefore, in recent year there has been a shift in emphasis towards cleaner ways of generating electricity. One such recent trend is solar photovoltaics (PV), which has seen rapid growth over the years. This ever-increasing trend of adopting PV system allows consumers to be producers or “Prosumers”. Due to the irregular production capability of solar PV, the need for an energy storage system like a battery bank is on the rise as well. This report evaluates how solar PV can be used in combination with a battery bank to supply the annual electricity demand for a household with little to no support from the grid. The building is assumed to be located in Bangalore, India. The energy demand for the household is estimated based on the requirements of a basic Indian house standard. The size and configuration of each component have been done with regards to the total load demand. Furthermore, the cost of the whole system is estimated in order to evaluate the feasibility of the grid-tied system from an economic perspective. The results show that a PV system consisting of four 270W solar panels, a battery bank of eight 150Ah lead-acid batteries and a 48V 4kW inverter is required to meet the annual energy demand of the house. The results show that from a technical standpoint, the above-mentioned technology is feasible. The results from the economic evaluation show that the localized cost of energy (LCOE) for the system is ₹6.01/kWh or € 0.078/kWh or 0.84SEK/kWh and the payback time for the given system is 16.19 years. On the bright side, there are new technological advancements in the PV field every day, which could mean that an energy system of this type can be an achievable and practical alternative.
477

Investigating the feasibility & impact of a solar array for Wits West Campus by using historical solar and power data

Singh, Ajeshni January 2016 (has links)
Master of Science in Engineering (Electrical) University of the Witwatersrand July, 2016 / This dissertation uses historical electrical consumption/load and actual solar radiation data to design a solar array for the University of the Witwatersrand’s West Campus. The array must meet the campus’s minimum demand as selling excess generated power back to the utility is not possible at this stage. The financial and spatial impact of adjusting the size of the array, design losses and cloud cover are also investigated. In addition to this, the influence on the payback period of financial variables such as taxes, electricity and start-up costs are also explored. The solar array system design process starts by determining the amount of power that the array must produce or supplement. Thereafter, load estimates and electrical consumption figures that are provided by utility bills or measured with load monitoring equipment are analysed. Furthermore, system losses are factored in which ultimately increases the size of the array. Once all the input variables are analysed, the amount of available solar radiation in the area where the array will be installed is required to determine the amount of energy that the array can produce. Several free databases with this information are available but it is found that this data over predicts the availability of solar radiation. The University has been monitoring the electrical consumption of West Campus since 2012 and solar radiation data is also available for this site. Comparing the satellite derived and measured datasets found that the ground monitored data is 25 % more accurate and therefore better suited for designing a solar array. Individually adjusting the design and financial variables changes the payback period between 3 – 17 %. Combining all the variables can reduce the payback of option 1 from 9.6 years to 6.1 years. Clear legislation needs to be developed for the uptake of renewable energy resources and supported by better rebates for renewable users and harsher taxes for non-renewable users. Should legislation change and if additional capital is available, a larger array will benefit the University more and should be installed as the difference between payback periods is not significant. This is mainly due to decreased costs associated with a higher yield. The financial benefits of a larger array will also be more lucrative if better rebates are enforced. / MT2017
478

Investigation into the steady-state load sharing of weak sources in a low voltage three-phase islanded microgrid

Wu, Meng-Chun Merelda January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in ful lment of the requirements for the degree of Master of Science in Engineering. Johannesburg, 2016 / This research investigates the power sharing between distributed energy resources with voltage and frequency droop control. A case study based on voltage sources in an islanded microgrid is set up in the laboratory, referred to as: The Example Microgrid. The Example Microgrid consists of two synchronous generators, active and reactive power loads. A simulation model is constructed based on the laboratory set-up, where componentwise and system-wise testing are completed. The simulation results are validated with the experimental set-up, and it is concluded that the model accurately represents the physical system under steady-state conditions. Further simulation studies on conventional droop controllers are conducted based on the Example Microgrid model. The results indicate that the use of conventional droop control is inappropriate for small, low-voltage islanded microgrids. As a possible application of this work, three variations of adapted droop controllers are simulated and their performance evaluated. It is found that with the adapted droop controllers, the power sharing error can be minimised / M T 2016
479

Transesterification of animal fat to biodiesel over solid hydroxy sodalite catalyst in a batch reactor

Makgaba, Chabisha Precious January 2017 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering September 2017 / Owing to the ongoing advancement in technology, escalating population sizes and urbanization rate, fossil fuels (coal, petroleum oil and natural gas) remain attractive as an energy source to run most of the daily operations. Consequent to heavy consumption of fossil fuels, the world faces detrimental challenges such as future energy security and environmental concerns. Combustion of fossil fuels results in emission of greenhouse gases such as CO2 and SO2 thereby contributing to global warming and acid rain problems. These alarming challenges drive the need for exploration of alternative energy sources to reduce dependence on fossil fuels. Presented in this dissertation is a study of biodiesel, a biodegradable, non-toxic and environmentally benign energy source as an alternative to petroleum-based fuels. Chemically known as fatty acid alkyl ester (FAAE), biodiesel is commonly produced from vegetable oils or animal fats in addition to methanol by a catalysed transesterification reaction. Currently, biodiesel is more expensive than petroleum diesel due to high operation costs incurred during the production process. Despite the high prices, biodiesel production continues to grow on an industrial scale across the world as supported by policy measures and biofuel targets. Researchers have identified two main factors that contribute to high costs of biodiesel production; 1) type of feedstock and 2) type of catalyst used in the production process. Conventional methods of production use edible oils as feedstock. This becomes unjustified due to the potential price hikes in the food market owing to the prospective competition between fuel and food industries. As a result, numerous researchers reported on the use of cheap and non- edible feedstock oils such as waste cooking oil and animal fat. However, the challenge with the use of non-edible oils is their high content of free fatty acids (FFA) which is unattractive for a smooth transesterification process, more especially when homogeneous base catalysts are used. Homogeneous base catalysts are widely used in current industrial biodiesel production methods because they yield faster transesterification processes due to increased reaction rates. However, these types of catalysts are much sensitive to FFA, so when high FFA content feedstock is used, a saponification reaction occurs which consequently reduces the yield of biodiesel. An additional process unit is required to reduce the FFA content via esterification process prior to the main transesterification reaction. Furthermore, since the reaction mixture is homogeneously combined with the product, an additional process unit for product separation is required to recover the resulting biodiesel from the mixture, translating into additional production costs. Researchers are currently exploring the use of heterogeneous catalysts, which tend to avoid the saponification reaction and reduce the need for an esterification reaction used as oil pre-treatment step to reduce FFA content. This dissertation is therefore dedicated to attaining a economic and environmentally attractive process for biodiesel production using cheap non-edible beef tallow oil (BTO) and a heterogeneous hydroxy sodalite (H-SOD) catalyst. Some industrial operations such as zeolite manufacturing processes produce a low grade H-SOD as by products, which is in turn disposed as chemical waste and therefore induces ground water contamination concerns. Exploration on the use of H-SOD as catalyst can largely contribute to the environmental protective measures as a waste management process among other benefits. The use of H-SOD is extensively reported in current research development on membrane separation; limited research reports on the use of H-SOD material to catalyse chemical processes are present in literature. For the first time in open literature, H-SOD is reported as the solid catalyst for biodiesel production in this dissertation. The investigative study commenced with a preliminary study to gauge the feasibility of using H-SOD as a catalyst where a batch transesterification of waste cooking oil (WCO) was studied. The reaction was conducted at 60 ᵒC for 12 h at a methanol-to-WCO ratio of 7.5:1 using 3 wt. % H-SOD catalyst with a particle size of just below 300 Å, the stirring intensity was kept at 1000 rpm to ensure uniform mixing throughout the reaction. The product obtained after the reaction was analysed using a pre-calibrated Chromatography-Mass Spectrometer (GC-MS) described in Chapter 5, and the results demonstrated the possibility of catalysing a transesterification reaction using solid H-SOD. Under the same reaction conditions, the study was then extended to an investigation on the use of H-SOD to catalyze transesterification of BTO (4.53 % FFA) to FAME. The results showed that FAME was produced, at a yield of 39.6% and a conversion of 68.4%. Seeing that the yield and conversion obtained is relatively small compared to literature findings, the effect of some process conditions on the conversion and biodiesel yield were studied. The transesterification reaction was conducted with variations in the mixing intensity (700 – 1250 rpm), catalyst particle size (200 – 300 Å), reaction time (6 – 24 h) and reaction temperature (40-60 °C). The maximum performance of H-SOD catalyst for a transesterification of BTO was achieved with a conversion of 78.3% and biodiesel yield of 62.9% obtained at optimum conditions: a stirrer speed of 1000 rpm, with the smallest catalyst particle size of 200 Å at maximum temperature of 60 °C and 24 h reaction time. The values of activation energy, reaction constants and frequency factor obtained from the kinetic study were 0.0011 min-1, 5.52 x108 min-1 and 79.20 kJ/mol, respectively, and are within the range of the results reported in literature. As a result, solid H-SOD is recommended as a catalyst for the batch transesterification of BTO in a biodiesel production process. / MT2018
480

Biogasoline production from waste cooking oil using nano-cobalt molybdenum catalyst

Mabika, Kudzai January 2016 (has links)
Thesis (M.Sc. (Eng.))--University of the Witwatersrand, Faculty of Engineering and the Built Environment, School of Chemical and Metallurgical Engineering, 2016. / The world is gradually shifting to renewable clean energy and away from fossil fuels which are considered to have a finite reserve and have negative impact on the environment. Many alternatives have been developed including biofuels. Of the biofuel family, not all products are produced at the same level given the differences in technological advancements. Commonly produced biofuels which are commercialised are bioethanol and biodiesel. Given that a large number of vehicles operate using gasoline, there is a need to develop biogasoline specific processes to produce biogasoline. Bioethanol is used as a blending agent and has a drawback of engine corrosion. Biogasoline can be used for blending or to substitute gasoline in existing motors. The main objective of the project was to produce biogasoline from waste cooking oil using nano-particle catalyst for better performance. A Co-Mo/Al2O3 catalyst was synthesized and tested in two processes namely thermal cracking and hydrocracking. The waste cooking oil used in this study was pre-treated to remove salts and excess water prior to cracking process. Various analytical techniques were then used to characterize the catalyst, waste cooking oil and the products. Waste cooking oil was successfully pre-treated for salt removal with salt dropping from 13.18% to 4.37%. Effect of catalyst performance on thermal cracking proved to be minimal with temperature being the major factor in cracking. The catalyst performed better under hydrocracking with effects of catalyst calcination temperature and catalyst/oil ratio being more apparent as opposed to thermal cracking. Highest percentage biogasoline achieved under thermal cracking was 81.6% at a reaction temperature of 600°C. The highest percentage biogasoline achieved under hydrocracking was 75.7% at a reaction temperature of 210°C, using calcined catalyst at 700°C, catalyst/oil mass ratio of 1/75 and reaction time of 1hr. The biogasoline produced had low sulphur content. The highest sulphur containing product for hydrocracking was 7.4% and that for thermal cracking was 1.3%. It is recommended that the hydrocracking and thermal cracking methods be used for biogasoline production and that further research be done on the optimization of the biogasoline production process and synthesis of nano Co-Mo catalyst. / MT2016

Page generated in 0.0641 seconds