Spelling suggestions: "subject:"renewable energy sources."" "subject:"enewable energy sources.""
81 |
The role of agents for change in the sustainable development of wave energy in the Highlands and Islands region of ScotlandBilling, Suzannah-Lynn January 2016 (has links)
With the Scottish Government's commitment to sourcing 100% of the national electricity demand from renewable sources by 2020, within the global framework of climate change mitigation, the potential of the marine environment around the Highlands and Islands Region of Scotland to add to Scotland's renewables portfolio has led to the expansion of the wave and tidal industries in recent years. Nevertheless, to date, there has been limited research conducted on the social systems around marine renewable energy development, excluding offshore wind. In answer to this deficit, this study explores a well-established concept within the academic arenas of business, health, and rural development, among others, of agents for change (AFCs), within the context of the rapidly emerging wave energy sector. Two case studies, Lewis in the Outer Hebrides, and Orkney, were chosen based on their localities and the interest that they have garnered from wave energy developers due to their high energy marine environments. A grounded approach was taken to data collection and a social power analysis was conducted in order to find AFCs working within or closely with the wave energy industry that were not part of structured or hierarchical organisations. One emergent theme was that there was a noteworthy barrier to wave energy development in the case studies and to the work that the agents for change were doing in the form of a complex dynamic between financial investments in the sector, national grid, national energy policy, and the technology itself. The agents for change were found to act as catalysts for the wave energy industry through their perseverance and visionary approach to development. The motivations of the AFCs is discussed and the shifting roles that they took as a project progresses is described and compared to other change process models, namely Lewin (1958) and Kotter (1995).
|
82 |
The impact of solar water heaters on sustainable developmentMbeng, Regina Nso January 2014 (has links)
In this present world order of growing information, communication and technological advancement, it is primordial that climate change adaptation and mitigation efforts seeks to make people resilient to inevitable climate inconsistency through the exploitation and development of renewable energy sources. Though climate impacts are global, the population most at risk is predominantly from developing countries, particularly poor communities who have experienced multi-layered threats from floods, droughts and energy supply, just to mention a few. This explains why sustainable development is at the heart of all development trajectories in the world today, specifically the post-2015 development tenets. Climate change adaptation and mitigation requires international collaboration from all nations in order to get an effective and unified response to climate change. Building a critical mass for action and an institutional memory to sustain policies and efforts is crucial. A resilient-based approach to climate mitigation and adaptation founded on a crisis-driven reaction to communities vulnerable to climate threat will boost quality of life through the provision and safeguarding of safety nets for the poor. Solar water heaters, a renewable energy source, are here considered as a critical option to South Africa’s coal-driven economy as a means of alleviating energy poverty in rural and low-income communities, to be more precise. Therefore, SWHs have become the epicentre of sustainable development policies and climate change mitigation efforts in South Africa. So far, this device has attracted the attention of local governments in the country who view it as a game changer in the field, particularly towards greenhouse gas emission and energy conservation. The contour of this thesis is to assess the impact of solar water heaters on sustainable development. Although it is generally difficult to assess the real impact of technology on people, that of SWHs was established by asking questions about livelihood before, during and after the introduction of this device.
|
83 |
Statistical model for risk diversification in renewable energyAhame, Edmund January 2013 (has links)
The growth of the industry and population of South Africa urges to seek new sources of electric power, hence the need to look at alternative power sources. Power output from some renewable energy sources is highly volatile. For instance power output from wind turbines or photovoltaic solar panels fluctuates between zero and the maximum rated power out. To optimize the overall power output a model was designed to determine the best trade-off between production from two or more renewable energy sources putting emphasis on wind and solar. Different measures of risk, such as coefficient of variation (CV) and value at risk (VAR), were used to determine the best hybrid renewable energy system (HRES) configuration. Depending on the investors’ expected returns (demand) and risk averseness, they will be able to use the model to choose the best configuration that suites their needs. In general it was found that investing in a diversified HRES is better than investing in individual power sources.
|
84 |
Analysis of euoniticellus intermedius, larva gut micro-flora: potential application in the production of biofuels.Mabhegedhe, Munamato 12 September 2012 (has links)
Recent years have seen a dramatic increase in first generation bio-fuel production, mainly driven by concerns of climate change and rising prices of transportation fossil fuels. Due to significant pressure on the few available food sources, second generation bio-fuels have entered the fray, as a sustainable alternative. This research‟s aim was to search for cellulolytic micro-organisms and enzymes from the gut of the dung beetle, Euoniticellus intermedius, (Coleoptera: Scarabaeida) that can be used in the production of second generation bio-fuels. Dung beetle larvae were dissected and the gut micro-flora cultured in cellulose medium. Bacterial growth and cellulase activity was monitored on a daily basis. DNA isolation was then done on the cellulose medium-cultured microbes and the isolated DNA cloned in E. coli. The clones were screened for cellulase activity using plate assays. A total of 7 colonies out of 160 screened colonies showed positive CMC (endo-β-1,4-glucanase) and MUC (cellobiohydrolase) activities. Sequencing of these positive colonies yielded mostly bacteria belonging to the Enterobacteriaceae family, most of which have not been previously reported to have cellulase activity. This study‟s findings prove that in addition to this dung beetle‟s gut being a fruitful source of microbial biodiversity, it is also a potential source of cellulolytic micro-organisms and enzyme activities that will aid the function and design of future bioreactors for the bio-fuel industry.
|
85 |
The implications of the rise of clean energy on lithium market dynamicsJackson, Martin Robert January 2018 (has links)
A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in partial fulfillment of the requirements for the degree of Master of Science in Engineering, Johannesburg 2018 / This research aims to assess the factors surrounding the emergence of markets with the greatest potential for rechargeable lithium battery adoption. The implications of the rise of electric vehicles and electrical energy storage are measured against lithium supply and market pricing. This was resolved by reviewing all available information and comparing it with the intricacies of resources, production and recycling. An analysis of price formation is also undertaken before making assumptions to enable a forecast of future market dynamics until 2030. Electric vehicles will require almost threefold the lithium produced in 2015 by the end of the period considered, with grid storage predicted to follow suit. No geological supply constraints were found, but economic scarcity is a strong possibility. Production is highly vulnerable to disruption due to concentration and the situation is exacerbated by inelastic demand. Recycling may be the most critical means of diversifying and improving supplies. / XL2019
|
86 |
Pearl River Delta and the development of renewable energy in HongKongAu, P. N., 區沛能. January 2004 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
|
87 |
The effects of alternative energy on Saudi Arabia and the implications for U.S. national security /Yaggi, Danielle Nicole, January 1900 (has links)
Thesis (M.S.)--Missouri State University, 2008. / "May 2008." Includes bibliographical references (leaves 128-136). Also available online.
|
88 |
The Icelandic Example: Planning for Hydrogen Fueled Transportation in Oregon / Planning for Hydrogen Fueled Transportation in OregonFisher, Jeffrey Dean, 1966- 06 1900 (has links)
xii, 91 p. :ill. (some col.), maps. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / The ability to provide an adequate supply ofrenewable energy necessary to offset
the emissions of"zero emission" vehicles is of importance for Oregon's planners and
policy makers. An increase in electricity generation caused by the electricity required for
zero-emissions hydrogen fuel cell vehicles will result in an increase in greenhouse gas
emissions ifrenewable energy is not installed to meet hydrogen fuel cell needs. What are
the renewable energy implications for Oregon planners to consider for meeting future fuel
cell zero emission vehicle (ZEV) needs?
Work done in Iceland can serve as an example for Oregon's need for renewable
energy to meet ZEV needs. Icelandic data about hydrogen generation and the renewable
energy requirements necessary for ZEVs at the Gtj6thaIs hydrogen fueling station set a
benchmark for Oregon planners to consider when figuring the impact of ZEVs. / Committee in Charge:
Dr. Robert F. Young, Chair;
Dr. Greg Bothun;
Mr. Roger Ebbage
|
89 |
Mitigating exclusionary greening of South African cities through participation of indigent households in renewable energy: the case of Galeshwe settlement in Sol Plaatjie municipality, South AfricaTyabashe, Nomonde January 2018 (has links)
A research report submitted to the Faculty of Engineering and Built Environment, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Masters of Architecture in the field of Sustainable and Energy Efficient Cities
Johannesburg May 2018 / Based on the Sol Plaatje Municipality case study, this study focuses on how an innovative municipal business and funding approach could serve as a tool for transitioning from fossil fuels to renewable energy (solar) for the benefit of both indigent households and the municipality. Primary data from the municipality and indigent households in Galeshewe settlement indicates that in its current form, the 50kWh free basic electricity that indigent households receive monthly from the municipality is insufficient for their basic energy needs, while purchasing additional electricity is becoming increasingly unaffordable. This results in suppressed demand for the households and ongoing risk to the municipality due to escalating costs.
In mitigation of the two fundamental challenges, findings from primary and secondary data have guided the study to the Renewable Energy for Low Income Earners (RELIE) model. The Equitable Share Grant and Integrated National Electrification Programme Grant (as currently allocated to municipalities by National Treasury and the Department of Energy for free basic electricity and electricity infrastructure provision for low income households) are highlighted as the initial funding channels under the proposed model based on a backcasting approach. Municipal energy plans and policies as well as integrated human settlements’ spatial plans also emerge as critical tools for transitioning to inclusionary RE. Other funding sources in the RELIE model include existing government funds such as the Green Fund and the Central Energy Fund from the Department of Environmental Affairs, as well as supplementary funds from relevant agencies such as climate funding entities and philanthropic socially responsive investments.
The model also envisages end-user contribution through affordable payments for service. In conclusion, the study recommends that the RELIE model findings could be adapted for other municipalities in South Africa faced with the escalating indigent household energy crisis. / MT 2018
|
90 |
Predicting the renewable energy portfolio for the southern half of the United States through 2050 by matching energy sources to regional needsYee, Victoria E. 01 January 2012 (has links) (PDF)
Worldwide energy consumption is estimated to double between 2008 and 2035. Over-dependence on energy imports from a few, often politically unstable countries, and unpredictable oil and gas prices, pushes energy to a critical agenda. While there is an agreement that we need to change the production and consumption of energy, there is still disagreement about the specific changes that are needed and how they can be achieved.
The conventional energy plans relying primarily on fossil fuels and nuclear technologies, which are in need of transformation due to limited resources and carbon dioxide emissions. Energy efficiency improvements and renewable energy should play a leading role in the America's energy future. Energy and environmental organizations believe that renewable energy and energy efficiency can meet half of the world's energy needs by 2050.
This thesis describes a model that predicts renewable energy portfolios for the Southern portion of the United States, by evaluating multiple renewable energy sources such as solar, wind, hydropower, biomass, and geothermal. The Southern US is divided into three regions: Southwest, South Central, and Southeast, which are chosen given their location and the level of abundance of renewable resources, thereby minimizing inefficiencies and losses associated to the present generation system. A mathematical predictor takes into account variables such as supply/demand, non-renewable/renewable sources, and time.
From the results, the Southwest and South Central regions confirm an surplus of renewable electricity by 2050, but the Southeast region does not have enough renewable resources to detach itself from the use of fossil fuels. The South Central region begins producing a surplus of renewable energy in 2014 and reaches an excess amount of 14,552 billion KWh by 2050. This means there will be no need to transfer electricity over long distances, which will increase the overall efficiency of electrical generation.
|
Page generated in 0.3887 seconds