• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of renin-angiotensin system inhibitors on pancreatic injury in cerulein-induced acute pancreatitis: potential role of pancreatic renin-angiotensin system in exocrine pancreas.

January 2003 (has links)
Tsang, Siu Wai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 107-121). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgements --- p.v / Table of Contents --- p.vi / List of Abbreviations --- p.x / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Renin-angiotensin system (RAS) --- p.1 / Chapter 1.1.1 --- Circulating RAS --- p.2 / Chapter 1.1.2 --- Tissue-specific RAS --- p.5 / Chapter 1.2 --- RAS inhibitors --- p.7 / Chapter 1.2.1 --- Angiotensin converting enzyme inhibitor --- p.8 / Chapter 1.2.2 --- Non-specific angiotensin II receptor blocker --- p.9 / Chapter 1.2.3 --- Specific AT1 receptor antagonist --- p.10 / Chapter 1.2.4 --- Specific AT2 receptor antagonist --- p.11 / Chapter 1.3 --- Pancreas and functions of exocrine pancreas --- p.14 / Chapter 1.3.1 --- Structure of pancreas --- p.14 / Chapter 1.3.2 --- Exocrine secretions and pancreatic enzymes --- p.16 / Chapter 1.3.3 --- Regulation of exocrine secretions --- p.17 / Chapter 1.4 --- Pancreatic RAS --- p.18 / Chapter 1.4.1 --- Expression and localization --- p.18 / Chapter 1.4.2 --- Regulation --- p.19 / Chapter 1.4.3 --- Clinical relevance to the pancreas --- p.20 / Chapter 1.5 --- Acute pancreatitis --- p.21 / Chapter 1.5.1 --- Pathogenesis --- p.21 / Chapter 1.5.2 --- Experimental models of acute pancreatitis --- p.22 / Chapter 1.5.3 --- Criteria of acute pancreatitis --- p.23 / Chapter 1.5.4 --- Oxidative stress in acute pancreatitis --- p.24 / Chapter 1.6 --- RAS and acute pancreatitis in exocrine pancreas --- p.26 / Chapter 1.6.1 --- RAS and acute pancreatitis --- p.26 / Chapter 1.6.2 --- RAS and pancreatic microcirculation --- p.26 / Chapter 1.6.3 --- RAS and tissue injury --- p.27 / Chapter 1.6.4 --- Exocrine pancreatic RAS and acute pancreatitis-induced injury --- p.28 / Chapter 1.7 --- Aims of study --- p.29 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Animal models and RAS inhibitors --- p.30 / Chapter 2.1.1 --- Cerulein-induced acute pancreatitis --- p.30 / Chapter 2.1.2 --- Prophylactic treatment with RAS inhibitors --- p.31 / Chapter 2.1.3 --- Therapeutic treatment with RAS inhibitors --- p.32 / Chapter 2.2 --- Evaluation of pancreatic injury --- p.32 / Chapter 2.2.1 --- Assessment of pancreatic water content --- p.33 / Chapter 2.2.2 --- Measurement of α-amylase activity in plasma --- p.33 / Chapter 2.2.3 --- Measurement of lipase activity in plasma --- p.34 / Chapter 2.3 --- Histopathological examinations --- p.34 / Chapter 2.3.1 --- Preparation of paraffin blocks --- p.35 / Chapter 2.3.2 --- Hematoxylin and eosin staining --- p.35 / Chapter 2.4 --- Biochemical assay of pancreatic oxidative status --- p.37 / Chapter 2.4.1 --- Sample preparation --- p.37 / Chapter 2.4.2 --- Quantification of protein content --- p.37 / Chapter 2.4.3 --- Measurement of glutathione levels --- p.38 / Chapter 2.4.4 --- Assessment of protein oxidation --- p.38 / Chapter 2.4.5 --- Assessment of lipid peroxidation --- p.39 / Chapter 2.4.6 --- Measurement of NADPH oxidase activity --- p.40 / Chapter 2.5 --- Studies of pancreatic digestive enzyme secretions from isolated acini --- p.40 / Chapter 2.5.1 --- Dissociation of acini from pancreatic tissue --- p.40 / Chapter 2.5.2 --- Treatment with peptides and RAS inhibitors --- p.42 / Chapter 2.5.3 --- Quantification of protein and DNA contents --- p.43 / Chapter 2.5.4 --- Measurement of a-amylase and lipase secretions --- p.44 / Chapter 2.5.5 --- RT-PCR analysis of RAS components in acinar cells --- p.44 / Chapter 2.6 --- Studies of RAS inhibitors on acute pancreatitis-induced systemic inflammation --- p.45 / Chapter 2.6.1 --- Systemic inflammation treatment --- p.45 / Chapter 2.6.2 --- Measurement of myeloperoxidase activity in lung and liver --- p.46 / Chapter 2.7 --- Statistical analysis --- p.47 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Time-course experiment of acute pancreatitis model --- p.48 / Chapter 3.1.1 --- Effect of acute pancreatitis on tissue injury --- p.48 / Chapter 3.1.2 --- Effects of acute pancreatitis on oxidative status --- p.48 / Chapter 3.2 --- Evaluation of ramiprilat and saralasin on changes of acute pancreatitis- induced pancreatic injury --- p.50 / Chapter 3.2.1 --- Changes in tissue injury and histopathology --- p.50 / Chapter 3.2.2 --- Changes in oxidative status --- p.57 / Chapter 3.3 --- Evaluation of losartan and PD123319 on changes of acute pancreatitis- induced pancreatic injury --- p.61 / Chapter 3.3.1 --- Changes in tissue injury and histopathology --- p.61 / Chapter 3.3.2 --- Changes in oxidative status --- p.68 / Chapter 3.4 --- Evaluation of acinar secretions of digestive enzymes --- p.71 / Chapter 3.4.1 --- Cholecystokinin octapeptide-induced acinar secretions --- p.71 / Chapter 3.4.2 --- Angiotensin II-induced acinar secretions --- p.71 / Chapter 3.4.3 --- Effects of losartan and PD 123319 on α-amylase secretion --- p.74 / Chapter 3.5 --- Existence and regulation of acinar RAS by acute pancreatitis --- p.75 / Chapter 3.5.1 --- Expression of angiotensinogen and its regulation by acute pancreatitis in acini --- p.76 / Chapter 3.5.2 --- Expression of AT1 receptor and its regulation by acute pancreatitis in acini --- p.76 / Chapter 3.5.3 --- Expression of AT2 receptor and its regulation by acute pancreatitis in acini --- p.76 / Chapter 3.5.4 --- Evaluation of RAS inhibitors in acute pancreatitis-induced acinar cells --- p.80 / Chapter 3.6 --- Preliminary data on acute pancreatitis-induced systemic inflammation --- p.81 / Chapter 3.6.1 --- Time-course experiment on lung injury --- p.81 / Chapter 3.6.2 --- Time-course experiment on liver injury --- p.83 / Chapter 3.6.3 --- Evaluation of losartan on systemic inflammation --- p.85 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- "Actions of RAS inhibitors on the changes of tissue injury, oxidative status and histopathology in acute pancreatitis-induced pancreas" --- p.87 / Chapter 4.1.1 --- Differential effects of ramiprilat and saralasin --- p.88 / Chapter 4.1.2 --- Differential effects of losartan and PD123319 --- p.92 / Chapter 4.2 --- Potential functions of RAS in pancreatic acinar secretions --- p.95 / Chapter 4.2.1 --- Potential role of AT1 receptor --- p.96 / Chapter 4.2.2 --- Potential role of AT2 receptor --- p.98 / Chapter 4.3 --- Regulation of RAS in acute pancreatitis-induced acini --- p.98 / Chapter 4.3.1 --- Regulation of RAS components in acinar cells --- p.99 / Chapter 4.3.2 --- Differential actions of losartan and PD123319 --- p.100 / Chapter 4.4 --- Potential role of RAS in acute pancreatitis --- p.102 / Chapter 4.4.1 --- Regulation of RAS components by acute pancreatitis --- p.102 / Chapter 4.4.2 --- Differential functions of AT1 and AT2 receptors in acute pancreatitis --- p.103 / Chapter 4.5 --- Conclusion --- p.104 / Chapter 4.6 --- Further studies --- p.105 / Chapter Chapter 5 --- Bibliography --- p.107
2

Regulation and function of renin-angiotensin system in the carotid body.

January 2002 (has links)
Siu-Yin Sylvia Lam. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 123-140). / Abstracts in English and Chinese. / Abstract --- p.i / 摘要 --- p.iv / 英中譯名對照 --- p.vi / Acknowledgements --- p.vii / Table of Contents --- p.viii / Abbreviations --- p.xiii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Overview of Carotid Body --- p.1 / Chapter 1.1.1 --- Type I Cells --- p.3 / Chapter 1.1.2 --- Type II Cells --- p.4 / Chapter 1.1.3 --- Blood Vessels --- p.5 / Chapter 1.1.4 --- Innervation --- p.5 / Chapter 1.1.5 --- Biochemistry --- p.6 / Chapter 1.1.6 --- Physiology and Function --- p.7 / Chapter 1.2 --- The Renin-Angiotensin System (RAS) --- p.8 / Chapter 1.2.1 --- Circulating RAS --- p.8 / Chapter 1.2.1.1 --- Angiotensinogen --- p.10 / Chapter 1.2.1.2 --- Renin --- p.10 / Chapter 1.2.1.3 --- Angiotensin I --- p.11 / Chapter 1.2.1.4 --- Angiotensin Converting Enzyme --- p.12 / Chapter 1.2.1.5 --- Angiotensin II --- p.12 / Chapter 1.2.1.6 --- Angiotensin II Receptors --- p.13 / Chapter 1.2.1.7 --- Angiotensin IV and Angiotensin IV Receptor --- p.15 / Chapter 1.2.2 --- Tissue RAS --- p.16 / Chapter 1.3 --- Hypoxia and Carotid Body --- p.18 / Chapter 1.4 --- Hypoxia and RAS --- p.21 / Chapter 1.5 --- Hypoxia and RAS in Carotid Body --- p.23 / Chapter 1.6 --- Aims of Study --- p.24 / Chapter 1.6.1 --- Existence of Functional Angiotensin II Receptors --- p.24 / Chapter 1.6.2 --- Regulation and Function of Angiotensin II Receptors by Chronic Hypoxia --- p.24 / Chapter 1.6.3 --- Existence of an Intrinsic Angiotensin-generating System --- p.25 / Chapter 1.6.4 --- Regulation of Local RAS by Chronic Hypoxia --- p.25 / Chapter 1.6.5 --- Studies of AT4 Receptor --- p.26 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- Experimental Animals and Rat Models --- p.27 / Chapter 2.1.1 --- Rat Model of Chronic Hypoxia --- p.27 / Chapter 2.1.2 --- Isolation of Carotid Body --- p.28 / Chapter 2.2 --- Semi-quantitative Reverse Transcriptase-polymerase Chain Reaction (RT-PCR) --- p.30 / Chapter 2.2.1 --- Total RNA Extraction and Quantification --- p.30 / Chapter 2.2.2 --- Reverse Transcription (RT) --- p.31 / Chapter 2.2.3 --- Polymerase Chain Reaction (PCR) --- p.31 / Chapter 2.2.4 --- Gel Electrophoresis --- p.34 / Chapter 2.2.5 --- Optimization of Semi-quantitative RT-PCR for RAS Gene Analysis --- p.34 / Chapter 2.3 --- Northern Blotting --- p.35 / Chapter 2.3.1 --- Transfer of Denatured RNA to Nitrocellulose Membrane By Capillary Elution --- p.35 / Chapter 2.3.2 --- Hybridization --- p.36 / Chapter 2.4 --- In-situ Hybridization --- p.38 / Chapter 2.4.1 --- Linearization of Angiotensinogen cDNA --- p.38 / Chapter 2.4.2 --- Riboprobe Preparation --- p.38 / Chapter 2.4.3 --- Quantification and Gel Electrophoresis of Riboprobes --- p.39 / Chapter 2.4.4 --- In-situ Hybridization Histochemistry --- p.39 / Chapter 2.5 --- Immunohistochemistry --- p.42 / Chapter 2.5.1 --- Preparation of Cryosection --- p.42 / Chapter 2.5.2 --- Indirect Immunoperoxidase Staining --- p.42 / Chapter 2.5.3 --- Immunofluorescent Double Staining --- p.43 / Chapter 2.6 --- Western Blot Analysis --- p.45 / Chapter 2.6.1 --- Preparation of Angiotensinogen Protein --- p.45 / Chapter 2.6.2 --- Quantification of Protein Concentration --- p.45 / Chapter 2.6.3 --- Sample Preparation --- p.45 / Chapter 2.6.4 --- Sodium Dodecyl-sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) --- p.46 / Chapter 2.6.5 --- Electroblotting and Immunodetection of Proteins --- p.46 / Chapter 2.7 --- Spectrofluorimetric Measurement and In-vitro Electrophysiology --- p.48 / Chapter 2.7.1 --- Dissociation of Carotid Body Type I Cells and Spectrofluorimetric Measurement --- p.48 / Chapter 2.7.2 --- In-vitro Electrophysiology --- p.49 / Chapter 2.8 --- Assay of ACE Activity --- p.51 / Chapter 2.8.1 --- Crude Membrane Preparation --- p.51 / Chapter 2.8.2 --- Basic Principle for ACE Activity Measurement --- p.51 / Chapter 2.8.3 --- Measurement of ACE Activity --- p.51 / Chapter 2.8.4 --- Fluorescence Measurement --- p.53 / Chapter 2.9 --- In-vitro Autoradiography and Fluorescence-labeled Binding Assay for Angiotensin IV --- p.54 / Chapter 2.9.1 --- Preparation of Frozen Tissue Sections --- p.54 / Chapter 2.9.2 --- Localization and Density of AT4 Receptor --- p.54 / Chapter 2.10 --- Statistics and Data Analysis --- p.57 / Chapter Chapter 3 --- Results / Chapter 3.1 --- Functional Expression of Angiotensin II Receptors --- p.58 / Chapter 3.1.1 --- [Ca2+]i Response to Angiotensin II --- p.58 / Chapter 3.1.2 --- Antagonistic Blockade of Angiotensin II Receptor Subtypes --- p.58 / Chapter 3.1.3 --- Expression of AT1 Receptors mRNA --- p.61 / Chapter 3.1.4 --- Cellular Localization of AT1 Receptors Protein --- p.61 / Chapter 3.2 --- Effect of Chronic Hypoxia on the Expression and Function of Angiotensin II Receptors --- p.64 / Chapter 3.2.1 --- Effect of Chronic Hypoxia on the Expression of AT1 Receptors --- p.64 / Chapter 3.2.2 --- Effect of Chronic Hypoxia on the Expression of AT2 Receptors --- p.67 / Chapter 3.2.3 --- Cellular Localization of the AT1 Receptor by Chronic Hypoxia --- p.69 / Chapter 3.2.4 --- Increase of Afferent Nerve Activities of the Carotid Body In-vitro by Angiotensin II --- p.71 / Chapter 3.2.5 --- Inhibition of Angiotensin II-mediated Response in Chronically Hypoxic Carotid Body by Losartan --- p.73 / Chapter 3.3 --- Evidence for the Existence of an Intrinsic Angiotensin-generating System --- p.75 / Chapter 3.3.1 --- Expression and Localization of Angiotensinogen mRNA --- p.75 / Chapter 3.3.2 --- Expression and Localization of Angiotensinogen Protein --- p.78 / Chapter 3.3.3 --- Expression of Renin mRNA --- p.81 / Chapter 3.3.4 --- Expression of ACE mRNA --- p.81 / Chapter 3.4 --- Effect of Chronic Hypoxia on the Locally-generated Angiotensin System --- p.85 / Chapter 3.4.1 --- Effect of Chronic Hypoxia on the Expression of Angiotensinogen mRNA --- p.85 / Chapter 3.4.2 --- Effect of Chronic Hypoxia on the Localization of Angiotensinogen mRNA --- p.87 / Chapter 3.4.3 --- Effect of Chronic Hypoxia on the Expression of Angiotensinogen Protein --- p.89 / Chapter 3.4.4 --- Effect of Chronic Hypoxia on the Expression of ACE --- p.91 / Chapter 3.5 --- Time-course Effect of Chronic Hypoxia on ACE Activity --- p.93 / Chapter 3.6 --- Preliminary Studies of AT4 Receptor --- p.98 / Chapter 3.6.1 --- In-vitro Autoradiographic Study of AT4 Receptors --- p.98 / Chapter 3.6.2 --- Localization of AT4 Receptors --- p.100 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- Functional Expression of Angiotensin II Receptors --- p.102 / Chapter 4.2 --- Upregulation and Function of Angiotensin II Receptors --- p.105 / Chapter 4.3 --- Existence of a Local RAS --- p.108 / Chapter 4.4 --- Regulation of the Local RAS --- p.112 / Chapter 4.5 --- Time-dependent Changes of ACE Activity --- p.155 / Chapter 4.6 --- Presence and Regulation of AT4 Receptor --- p.117 / Chapter 4.7 --- Conclusion --- p.120 / Chapter 4.8 --- Future Works --- p.121 / Chapter Chapter 5 --- References --- p.123
3

Interaction between the renin-angiotensin system and sympathoadrenal axis and its application in the pathogenesis of post-infarction heart remodeling. / CUHK electronic theses & dissertations collection

January 2001 (has links)
Ding Baoguo. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 225-247). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
4

Local renin-angiotensin system and its regulation in the rat pancreas.

January 2000 (has links)
Chan Wai-Pong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 114-135). / Abstracts in English and Chinese. / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- General review of pancreas --- p.1 / Chapter 1.2 --- The renin-angiotensin system (RAS) --- p.4 / Chapter 1.3 --- Tissue RAS --- p.12 / Chapter 1.4 --- Hypoxia and RAS --- p.21 / Chapter 1.5 --- Pancreatitis and RAS --- p.25 / Chapter 1.6 --- Aim of study --- p.27 / Chapter Chapter 2 --- Method / Chapter 2.1 --- Experimental animals and rat models --- p.30 / Chapter 2.2 --- Immunohistochemistry --- p.33 / Chapter 2.3 --- Semi-quantitative reverse transcriptase-polymase chain reaction (RT-PCR) --- p.37 / Chapter 2.4 --- Western blot analysis --- p.41 / Chapter 2.5 --- "Standard curve, quantitative competitive RT-PCR (SC-QC-RT-PCR)" --- p.45 / Chapter 2.6 --- Data analysis --- p.48 / Chapter Chapter 3 --- Result / Chapter 3.1 --- Existence of a local RAS in the rat pancreas --- p.49 / Chapter 3.2 --- Effect of chronic hypoxia on RAS expression in neonatal rat --- p.59 / Chapter 3.3 --- Effect of chronic hypoxia on RAS expression in mature rat --- p.72 / Chapter 3.4 --- Effect of experimental pancreatitis on RAS expression --- p.86 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- Existence of a local RAS in the rat pancreas --- p.97 / Chapter 4.2 --- Regulation of pancreatic RAS by chronic hypoxia --- p.101 / Chapter 4.3 --- Regulation of pancreatic RAS by pancreatitis --- p.106 / Chapter 4.4 --- Conclusion --- p.111 / Chapter 4.5 --- Further work --- p.112 / Chapter Chapter 5 --- References --- p.114
5

The growth and differentiation of fetal pancreatic progenitor cells: the novel roles of PDZ-domain-containing 2 and angiotensin II. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Fetal pancreatic tissues can be a promising source for pancreatic progenitor cells (PPCs). In this regard, we have successfully isolated and characterized a population of fetal PPCs from first trimester human fetal pancreas using a previously established basic protocol. Upon exposure to a cocktail of conventional growth factors, these PPCs are amenable to differentiate into insulin-secreting islet-like cell clusters (ICCs); however, these ICCs have yet to exert additional efforts to direct to glucose-responsive cells. To address this issue, we have proposed two novel morphogenic factors in the present study, namely PDZ-domain-containing 2 (PDZD2) and angiotensin II (Ang II), a physiologically active peptide of the renin-angiotensin system (RAS), that potentially promote the differentiation and maturation of PPCs/ICCs. / In light of these findings, we conclude that we have discovered two novel mechanisms, the PDZD2 and Ang II/AT2 receptor signaling pathways, in the regulation of the development of PPCs/ICCs, thus implying their novel roles during islet development in vivo. The present study provides a "proof-of-principle" that a local RAS is critically involved in governing islet cell development. This work may contribute to devising protocols for maturation of pancreatic progenitors for clinical islet transplantation. / Local RASs have been reported to regulate the differentiation of tissue progenitor cells. It has yet to be confirmed whether such systems exist and govern the PPC development. To address this issue, we herein provided evidence that expression of RAS components was highly regulated throughout PPC differentiation. Locally generated Ang II was found to maintain PPC growth and differentiation via mediation of the Ang II type 1 and type 2 (AT1 and AT 2) receptors. We found that the AT2, but not AT1, receptor was a key mediator of Ang II-induced upregulation of beta-cell transcription factors. Transplantation of AT2 receptor-depleted ICCs into immune-privileged diabetic mice failed to ameliorate hyperglycemia, implying that AT2 receptors are indispensable during ICC maturation in vivo. / PDZD2 and its secreted form (sPDZD2) have been found to express in our fetal PPCs. We first evaluated the potential role of sPDZD2 in stimulating PPC differentiation and established an optimal concentration for such stimulation. We found that 10-9 M sPDZD2 promoted PPC differentiation, as evidenced by the up-regulation of the pancreatic endocrine markers and C-peptide content in the ICCs. It enhanced their expression of the L-type voltage-gated calcium ion channel (Cav1.2) and conferred an ability to secrete insulin in response to membrane depolarization. Yet these ICCs remained glucose-unresponsive because of the minimal expression of GLUT-2. We thus attempted to study another potential morphogenic candidate, Ang II. / To further test whether a functional RAS is present and if so, whether it regulates islet development in vivo, we employed a mouse embryo model at different embryonic days and reported a stronger AT2 receptor expression during the 2nd developmental transition of pancreas development. AT2 receptor blockade from e8.0 resulted in abnormalities in fetal pancreatic development. Neonates from these mother mice displayed destructed pancreas/islet architecture, a hampered ability in glucose-stimulated insulin-secretion possibly attributed to a decreased ratio of beta-cell to alpha-cell, and an impaired glucose tolerance at 4-wk old. / Leung, Kwan Keung. / Adviser: Po Sing Leung. / Source: Dissertation Abstracts International, Volume: 72-04, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 254-284). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
6

Pharmacogenomics of antihypertensive therapy. / CUHK electronic theses & dissertations collection

January 2012 (has links)
研究背景和目的 / 高血壓和糖尿病是人群中常見的疾病,兩者常共同存在,其共存的病理生理機制非常複雜,其中腎素血管景張素系統功能紊亂起重要作用。多個研究表明血管緊張素轉化晦抑制劑和血管緊張素II 1 型受體阻滯劑通過調節不同基因的表達,發揮其保護心血管和腎臟功能的效用。然而,目前仍缺乏遠兩類藥物影響全基因表達譜的全面調查。因此,本研究應用全基因表達譜晶片技術,檢測分析了高血壓和糖尿病並發的病人在服用安慰劑、雷米普利(ramipril)和替米沙坦(telmisartan)後的全基因表達譜的變化,從而全面評估了血管緊張素轉化臨抑制劑和血管繁張素II 1 型受體阻滯劑對相關基因的轉錄調控作用。 / 方法 / 11 名患有高血壓和糖尿病的病人(男性5 名)在服用安慰劑最少2 星期后,以隨機吹序接受為期各6 星期的雷米普利和替米沙坦治療,並分別在安慰劑期和2 個藥物治療期結束后提取心A 進行全基因表達譜分析。 / 結果 / 與服用安慰劑時的全基因表達譜相比,雷米普利治療后有267 個基因的表達降低, 99 個基因的表達增強。表達差異幅度為-2.0 至1.3 (P < 0.05) 。表達下降的基因主要與血管平滑肌收縮、炎症反應和氧化壓力相關。表達增強的基因主要與心血管炎症反應負調節相關。基因共表達網絡分析表明, 2 個共表達基因組與雷米普利的降血壓作用相闕, 3 個共表達基因組與肥胖相關。 / 與服用安慰劑時的全基因表達譜相比, 替米拉)、坦治療后有55 個基因表達降低, 158 個基因的表達增強。表達差異幅度為-1. 9 至1.3 (P < 0.05) 。表達增強的基因主要與脂質代謝、糖代謝和抗炎症因子作用相關。基因共表達網絡分析表明, 2 個共表達基因組與替米沙坦對24 小時舒張壓負荷量的作用相關, 2 個共表達基因組則與總膽固醇, 低密度脂蛋白膽固醇和C 反應蛋白相關。 / 結論 / 本論文描述了高血壓和2 型糖尿病病患全基因組表達的總體模式及經藥物治療後表達譜的相應改變, 為今後進一步研究腎素血管緊張素系統抑制劑和高血壓、糖尿病發展進程的相互作用提供了方向。 / Background and aim: Pathophysiological mechanisms underpinning the coexistence of hypertension and type 2 diabetes are complex systemic responses involving dysregulation of the renin-angiotensin system (RAS). We conducted this study to investigate the genome wide gene expression changes in patients with both hypertension and diabetes at three treatment stages, including placebo, ramipril and telmisartan. This study aimed to obtain a panoramic view of interactions between gene transcription and antihypertensive therapy by RAS inhibition. / Methods: 11 diabetic patients (S men) with hypertension were treated with placebo for at least 2 weeks followed by 6 weeks randomised crossover treatment with ramipril Smg daily and telmisartan 40mg daily, respectively. Total RNA were extracted from leukocytes at the end of placebo and each treatment period, and were hybridized to the whole transcript microarray. The limma package for R was used to identify differentially expressed genes between placebo and the 2 active treatments. The weighted gene coexpression network analysis (WGCNA) was applied to identify groups of genes (modules) highly correlated to a common biological function in pathogenesis and progression of hypertension and diabetes. / Results: There were 267 genes down-regulated and 99 genes up-regulated with ramipril. Fold changes of gene expression were ranged from -2.0 to 1.3 (P < 0.05). The down-regulated genes were involved in vascular signalling pathways responsible for vascular smooth muscle contraction, inflammation and oxidative stress. The up-regulated genes were associated with negative regulation of cardiovascular inflammation. The WGCNA identified 17 coexpression gene modules related to ramipril. The midnight blue (57 genes, r < -0.44, P < 0.05) and magenta (190 genes, r < -0.44, P < 0.05) modules were significantly correlated to blood pressure differences between placebo and ramipril. / There were 55 genes down-regulated and 158 genes up-regulated with telmisartan. Fold changes of gene expression were ranged from -1.9 to 1.3 (P < 0.05). The down-regulated genes were mainly associated with cardiovascular inflammation and oxidative stress. The up-regulated genes were associated with lipid and glucose metabolism and anti-inflammatory actions. The WGCNA identified 8 coexpression gene modules related to telmisartan. The black (56 genes, r = 0.46, P = 0.03) and turquoise (1340 genes, r = -0.48, P = 0.02) modules were correlated with diastolic blood pressure load. The blue (1027 genes) module was enriched with genes correlated with total cholesterol (r = - 0.52, P = 0.01), LDL-C (r = - 0.58, P = 0.004), and hsCRP (r = -0.57, P = 0.006). The green module (272 genes) was significantly correlated with LDL-C (r = - 0.44, P = 0.04) and hsCRP (r = - 0.59, P = 0.004). / Conclusion: Genome wide gene expression profiling in this study describes the general pattern and treatment responses in patients with hypertension and type 2 diabetes, which suggests future directions for further investigations on the interaction between actions of the RAS blockers and disease progression. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Deng, Hanbing. / "December 2011." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 198-256). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Declaration --- p.i / Publications --- p.ii / Abstract --- p.iv / 論文摘要 --- p.vi / Acknowledgements --- p.viii / Table of Contents --- p.x / List of tables --- p.xiv / List of figures --- p.xv / List of appendices --- p.xvii / List of abbreviations --- p.xviii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Overview --- p.1 / Chapter 1.2 --- Epidemiology --- p.6 / Chapter 1.2.1 --- Epidemiology of hypertension --- p.9 / Chapter 1.2.2 --- Epidemiology of type 2 diabetes --- p.10 / Chapter 1.3 --- Aetiology --- p.13 / Chapter 1.3.1 --- Ageing --- p.13 / Chapter 1.3.1.1 --- Age-induced artery stiffness --- p.14 / Chapter 1.3.1.2 --- Age-related endothelial dysfunction --- p.14 / Chapter 1.3.2 --- The renin-angiotensin system (RAS) --- p.16 / Chapter 1.3.2.1 --- The local RAS --- p.20 / Chapter 1.3.2.2 --- The RAS and insulin resistance --- p.22 / Chapter 1.3.2.3 --- The RAS and inflammation --- p.26 / Chapter 1.3.2.4 --- The RAS and oxidative stress --- p.28 / Chapter 1.3.3 --- Obesity --- p.31 / Chapter 1.3.3.1 --- Obesity and renin-angiotensin system (RAS) --- p.33 / Chapter 1.3.3.2 --- Obesity and insulin resistance --- p.36 / Chapter 1.3.3.3 --- Obesity and oxidative stress --- p.38 / Chapter 1.3.3.4 --- Obesity and sympathetic nervous system (SNS) --- p.38 / Chapter 1.4 --- Pharmacogenomics of antihypertensive therapy --- p.39 / Chapter 1.4.1 --- Angiotensin-converting enzyme inhibitors (ACEIs) --- p.41 / Chapter 1.4.2 --- Angiotensin II type 1 receptor blockers (ARBs) --- p.43 / Chapter Chapter 2 --- Aim --- p.59 / Chapter Chapter 3 --- Methods --- p.60 / Chapter 3.1 --- Subjects --- p.60 / Chapter 3.1.1 --- Subject recruitment protocol --- p.60 / Chapter 3.1.2 --- Definition of type 2 diabetes --- p.62 / Chapter 3.1.3 --- Definition of obesity --- p.62 / Chapter 3.1.4 --- Definition of dyslipidaemia --- p.63 / Chapter 3.2 --- Study design and procedure --- p.64 / Chapter 3.2.1 --- Blood pressure assessments --- p.65 / Chapter 3.2.2 --- Anthropometric measurements --- p.68 / Chapter 3.2.3 --- Medical history, life style and side effect evaluation --- p.68 / Chapter 3.2.4 --- RNA isolation --- p.68 / Chapter 3.2.5 --- RNA quality assessment --- p.70 / Chapter 3.2.6 --- Oligonucleotide microarrays --- p.71 / Chapter 3.2.7 --- DNA extraction --- p.75 / Chapter 3.2.8 --- Biomedical measurements --- p.76 / Chapter 3.2.8.1 --- Glycosylated haemoglobin Alc (HbA₁c) --- p.77 / Chapter 3.2.8.2 --- Fasting plasma glucose (FP G) --- p.77 / Chapter 3.2.8.3 --- Fasting insulin --- p.77 / Chapter 3.2.8.4 --- Plasma urate --- p.77 / Chapter 3.2.8.5 --- High sensitive C-reactive protein (hsCRP) --- p.78 / Chapter 3.2.8.6 --- Fasting plasma triglycerides (TG) --- p.78 / Chapter 3.2.8.7 --- Fasting plasma cholesterols --- p.78 / Chapter 3.2.8.8 --- Renal and liver functions --- p.78 / Chapter 3.2.8.9 --- Urinary parameters --- p.79 / Chapter 3.3 --- Statistical Analysis --- p.79 / Chapter 3.3.1 --- Statistical analysis of clinical and biomedical data --- p.79 / Chapter 3.3.2 --- Analysis of microarray data --- p.80 / Chapter 3.3.2.1 --- Raw data assessment --- p.80 / Chapter 3.3.2.2 --- Data normalisation --- p.92 / Chapter 3.3.2.3 --- Data filtering --- p.96 / Chapter 3.3.2.4 --- Linear models for assessment of differential expression --- p.96 / Chapter 3.3.2.5 --- Weighted gene coexpression network analysis --- p.101 / Chapter 3.3.2.6 --- Network visualisation and gene ontology analysis --- p.102 / Chapter 3.3.3 --- Sample size calculation --- p.103 / Chapter Chapter 4 --- Results --- p.104 / Chapter 4.1 --- Demographic and biomedical characteristics at baseline --- p.104 / Chapter 4.1.1 --- Hypertension and diabetes status at baseline --- p.108 / Chapter 4.1.2 --- Prevalence of dyslipidaemia --- p.108 / Chapter 4.1.3 --- Prevalence of obesity --- p.109 / Chapter 4.1.4 --- Prevalence of metabolic syndrome --- p.109 / Chapter 4.1.5 --- Inflammation markers --- p.110 / Chapter 4.2 --- Blood pressure response to the RAS blockers --- p.110 / Chapter 4.2.1 --- Clinic blood pressure --- p.110 / Chapter 4.2.2 --- 24-hour ambulatory blood pressure --- p.112 / Chapter 4.3 --- Biomedical characteristics --- p.118 / Chapter 4.4 --- Compliance, side effects and adverse events --- p.120 / Chapter 4.5 --- Gene expression differences between treatments --- p.121 / Chapter 4.5.1 --- Gene expression differences between placebo and ramipril --- p.121 / Chapter 4.5.1.1 --- Expression changes in genes related to regulation of transcription with ramipril --- p.122 / Chapter 4.5.1.2 --- Expression changes with ramipril in genes related to molecular mechanism of cardiovascular changes in hypertension --- p.125 / Chapter 4.5.1.3 --- Expression changes in genes related to blood pressure with ramipril --- p.128 / Chapter 4.5.1.4 --- Expression changes in genes related to fatty acid metabolism with ramipril --- p.130 / Chapter 4.5.1.5 --- Expression changes in genes related to inflammation with ramipril --- p.130 / Chapter 4.5.1.6 --- Expression changes in genes related to oxidative stress with ramipril --- p.133 / Chapter 4.5.1.7 --- Power estimation --- p.133 / Chapter 4.5.2 --- Gene expression differences between placebo and telmisartan --- p.135 / Chapter 4.5.2.1 --- Changes in regulation oftranscription with telmisartan --- p.137 / Chapter 4.5.2.2 --- Expression changes in genes related to glucose metabolism with telmisartan --- p.141 / Chapter 4.5.2.3 --- Expression changes in genes related to lipid metabolism with telmisartan --- p.143 / Chapter 4.5.2.4 --- Expression changes in genes related to inflammation with telmisartan --- p.143 / Chapter 4.5.2.5 --- Power estimation --- p.145 / Chapter 4.5.3 --- WGCNA for comparison between placebo and ramipriI --- p.147 / Chapter 4.5.3.1 --- Midnight blue module and clinical responses to ramipril --- p.152 / Chapter 4.5.3.2 --- Magenta module and blood pressure responses to ramipril --- p.154 / Chapter 4.5.3.3 --- Yellow module and clinical responses to ramipril --- p.158 / Chapter 4.5.3.4 --- Red module and clinical responses to ramipril --- p.161 / Chapter 4.5.3.5 --- Salmon module and clinical responses to ramipril --- p.163 / Chapter 4.5.4 --- WGCNA for comparison between placebo and telmisaItan --- p.168 / Chapter 4.5.4.1 --- Diastolic blood pressure load and gene coexpression modules --- p.168 / Chapter 4.5.4.2 --- Lipids, hsCRP and gene coexpression modules --- p.172 / Chapter Chapter 5 --- Discussion --- p.176 / Chapter 5.1 --- Gene expression changes related to ramipril --- p.177 / Chapter 5.1.1 --- Gene expression changes and blood pressure reduction by ramipri1 --- p.177 / Chapter 5.1.2 --- Gene expression changes and vascular protection by ramipri1 --- p.181 / Chapter 5.1.3 --- Obesity and gene expression changes by ramipril --- p.183 / Chapter 5.2 --- Gene expression changes related to telmisartan --- p.185 / Chapter 5.2.1 --- Blood pressure and coexpressed gene modules with telmisartan --- p.185 / Chapter 5.2.2 --- Lipid metabolism and gene expression changes by telmisartan --- p.187 / Chapter 5.2.3 --- Glucose metabolism and gene expression changes by telmisartan --- p.189 / Chapter 5.2.4 --- hsCRP and gene expression changes by telmisartan --- p.190 / Chapter 5.3 --- Limitations of this study and future directions of research --- p.191 / Chapter Chapter 6 --- Conclusion --- p.194 / References --- p.198 / Appendices --- p.257
7

The pancreatic renin-angiotensin system: its roles in pancreatic islets and in type 2 diabetes. / CUHK electronic theses & dissertations collection

January 2008 (has links)
In the first study, I aimed to compare the angiotensin II type 1 receptor (AT1R) expression levels of the isolated pancreatic islets from normal and mouse model of T2DM. In addition, 4-week-old diabetic mice were orally treated with AT1R antagonist losartan for 8 weeks. It is found that AT1R mRNA was upregulated markedly in diabetic islets and double-immunolabeling confirmed that AT1R was localized to beta-cells. Losartan selectively improved glucose-induced insulin release and (pro)insulin biosynthesis in diabetic islets. Oral losartan treatment delayed the onset of diabetes, and reduced hyperglycemia and glucose intolerance in diabetic mice. These data indicate that AT1R antagonism improves beta-cell function and glucose tolerance in young T2DM mice. / In the second study, I aimed to examine how the upregulated RAS could impair beta-cell function, where oxidative stress is the potential mediator. Meanwhile, T2DM results in oxidative stress-mediated activation of uncoupling protein 2 (UCP2), a negative regulator of islet function. Thus, it was postulated that some of the protective effects of AT1R antagonism might be mediated through interference with this pathway and tested this hypothesis in a mouse model of T2DM. In order to achieve this, losartan was given to 4-week-old diabetic mice for 8 weeks. UCP2-driven oxidative damage and apoptosis were analyzed in isolated islets. Results showed that losartan selectively inhibited oxidative stress via NADPH oxidase downregulation; this in turn suppressed UCP2 expression, thus improving beta-cell insulin secretion while decreasing apoptosis-induced beta-cell mass loss in diabetic mice islets. These data indicate that islet AT1R activation in young diabetic mice can lead to progressive islet beta-cell failure through UCP2-driven oxidative damage and apoptosis. / The mechanisms by which chronic hyperglycemia associated with glucotoxicity causes beta-cell dysfunction and apoptosis remain ambiguous. Voltage-gated outward potassium (Kv) current, which mediates beta-cell membrane potential and limits insulin secretion, could play a role in glucotoxicity. Meanwhile the RAS has been shown to be upregulated by prolonged exposure to high glucose. In the third part of my study, I therefore investigated the effects of prolonged exposure to high glucose and angiotensin II (Ang II) on the expression and activity of Kv channels in mouse pancreatic beta-cell. Dissociated mice beta-cells, incubated in 5.6 mM or 28 mM glucose for 3-5 days, were used for electrophysiological study; while isolated islets cultured for 1-7 days were proceeded for gene/protein expression analysis. Both Kv channel expression and current were markedly increased by prolonged glucose incubation. Simultaneously, Ang II reduced Kv current under normal glucose condition, while high glucose incubation abolished the effect of Ang II. Moreover, the ability of Ang II on Kv current reduction was eliminated by inhibiting AT2R but not AT1R. These data indicated that Ang II reduced Kv current via AT2R, which was abolished by prolonged high glucose incubation. On the other hand, high glucose increased Kv channel expression and current, which might alter the ability of insulin secretion in beta-cell. (Abstract shortened by UMI.) / Chu, Kwan Yi. / Adviser: P. S. Leung. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3246. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 163-188). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.

Page generated in 0.1074 seconds