• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Évaluation du transfert radiatif dans le coeur d'un Réacteur à Eau Pressurisée (REP) lors de la phase de renoyage d'un Accident de Perte de Réfrigérant Primaire (APRP) / Evaluation of the radiative transfer in the core of a Pressurized Water Reactor (PWR) during the reflooding step of a Loss Of Coolant Accident (LOCA)

Gerardin, Jonathan 28 September 2012 (has links)
On développe une méthode de résolution du transfert radiatif au sein d'un milieu vapeur-gouttelettes entouré de parois chaudes, en vue d'un couplage avec une résolution de l'écoulement à l'échelle de la CFD. Le domaine d'application considéré est l'étude du refroidissement du coeur d'une centrale nucléaire suite à un Accident de Perte de Réfrigérant Primaire (APRP). Le problème du transfert radiatif se découpe en deux sous-problèmes, l'un concernant l'évaluation des propriétés radiatives du milieu et le second la résolution du transfert radiatif. Les propriétés radiatives ont été calculées avec la théorie de Mie pour les gouttelettes et le modèle C-k pour la vapeur d'eau. On obtient un milieu absorbant, diffusant anisotrope, émissif, non gris et non homogène. De plus, compte tenu de la grande gamme possible des propriétés de l'écoulement (diamètre et concentration des gouttelettes, température et pression de la vapeur), le milieu peut être optiquement fin ou optiquement épais. Il faut donc une méthode de résolution du transfert radiatif efficace pour toutes les conditions observées dans un APRP et ayant un temps de calcul raisonnable en vue du couplage avec les autres modes de transferts. La méthode IDA, dérivée de l'approximation P1, a été choisie. Son niveau de précision a été validé sur des cas tests académiques et une expérimentation. Des simulations en condition APRP ont ensuite été effectuées, permettant d'évaluer les flux rayonnés et confirmant que le transfert radiatif n'est pas négligeable dans cet accident / We developped a method of resolution of radiative transfer inside a medium of vapor-droplets surrounded by hot walls, in order to couple it with a simulation of the flow at the CFD scale. The scope is the study of the cooling of the core of nuclear reactor following a Loss Of Coolant Accident (LOCA). The problem of radiative transfer can be cut into two sub problems, one concerning the evaluation of the radiative properties of the medium and a second concerning the solution of the radiative transfer equation. The radiative properties of the droplets have been computed with the use of the Mie Theory and those of the vapor have been computed with a Ck model. The medium made of vapor and droplets is an absorbing, anisotropically scattering, emissive, non grey, non homogeneous medium. Hence, owing to the possible variations of the flow properties (diameter and volumetric fraction of the droplets, temperature and pressure of the vapor), the medium can be optically thin or thick. Consequently, a method is required which solves the radiative transfer accurately, with a moderate calculation time for all of these prerequisites. The IDA has been chosen, derived from the well-known P1-approximation. Its accuracy has been checked on academical cases found in the literature and by comparison with experimental data. Simulations of LOCA flows have been conducted taking account of the radiative transfer, evaluating the radiative fluxes and showing that radiative transfer influence cannot be neglected
2

Modélisation du renoyage d'un cœur du réacteur nucléaire fortement dégradé / Modeling of reflood of severely damaged reactor core

Bachrata, Andrea 11 October 2012 (has links)
Les événements récents au Japon sur les centrales nucléaires de Fukushima ont montré que des accidents conduisant à la fusion du cœur peuvent survenir bine plus souvent qu’on ne l’avait supposé et que leur impact sur l’environnement et la vie publique est considérable. Pour les réacteurs actuels, un des moyens principaux pour stopper la progression de l’accident est de tenter de refroidir le plus rapidement possible les matériaux en utiliser une injection d’eau de secours. Suivant l’instant de déclenchement de l'injection d'eau dans un cœur dégradé (appelée renoyage) les zones du cœur présentent des degrés de dégradation variables. Ceci conduit à des écoulements 3D double phase dans la cuve à cause des hétérogénéités de porosité et de forme des matériaux à refroidir. La modélisation de ces écoulements est primordiale pour les études de sûreté. A l’IRSN, une partie de ces études se fait grâce au code ICARE-CATHARE. Ce code de calcul est utilisé en Europe par des entreprises nucléaires et sert à calculer l’évolution d’un accident dans un réacteur, en se concentrant sur l’état du cœur et du circuit primaire. L’objectif de cette thèse a été de développer un modèle de renoyage 3D (implanté dans ICARE-CATHARE) capable de traiter les configurations du cœur dégradé lors d'un accident grave. Le modèle proposé est caractérisé par un traitement du déséquilibre thermique entre les phases solide, liquide et gazeuse. Il inclut aussi deux équations de quantité de mouvement (une pour chacune des phases fluides). Une des améliorations faites au cours de cette thèse a été de bien distinguer les lois de transfert de chaleur pour différents régimes d’ébullition. On a ainsi proposé un modèle combinant les situations d’ébullition nucléée et d’ébullition en film. Les calculs permettent de mettre en évidence certaines caractéristiques multidimensionnelles de l’écoulement lors du renoyage, en particulier lorsqu’un fort gradient de pression est engendré dans le milieu poreux par l’écoulement de vapeur. En parallèle, l’IRSN a lancé un programme expérimental (essais PRELUDE et PEARL) dont l’objectif est de permettre la validation du modèle sur un dispositif 2D représentatif du renoyage de particules à haute température. L’analyse des résultats expérimentaux a permis de vérifier certains choix faits pour les lois physiques du modèle macroscopique. Néanmoins, la validation reste très globale puisqu’on ne dispose pas de mesures locales. La validation quantitative sur les données expérimentales a montré que le modèle fournit des résultats satisfaisants. Le modèle est capable de prédire la vitesse de progression du renoyage dans le cœur, la production du vapeur (instantanée et cumulée) et le pic de pression pour différents diamètres de particules et différents débits d’injection testés. / The TMI-2 accident and recently Fukushima accident demonstrated that the nuclear safety philosophy has to cover accident sequences involving massive core melt in order to develop reliable mitigation strategies for both, existing and advanced reactors. Although severe accidents are low likelihood and might be caused only by multiple failures, accident management is implemented for controlling their course and mitigating their consequences. In case of severe accident, the fuel rods may be severely damaged and oxidized. Finally, they collapse and form a debris bed on core support plate. Removal of decay heat from a damaged core is a challenging issue because of the difficulty for water to penetrate inside a porous medium. The reflooding (injection of water into core) may be applied only if the availability of safety injection is recovered during accident. If the injection becomes available only in the late phase of accident, water will enter a core configuration that will differ from original rodbundle geometry and will resemble to the severe damaged core observed in TMI-2. The higher temperatures and smaller hydraulic diameters in a porous medium make the coolability more difficult than for intact fuel rods under typical loss of coolant accident conditions. The modeling of this kind of hydraulic and heat transfer is a one of key objectives of this. At IRSN, part of the studies is realized using an European thermo-hydraulic computer code for severe accident analysis ICARE-CATHARE. The objective of this thesis is to develop a 3D reflood model (implemented into ICARE-CATHARE) that is able to treat different configurations of degraded core in a case of severe accident. The proposed model is characterized by treating of non-equilibrium thermal between the solid, liquid and gas phase. It includes also two momentum balance equations. The model is based on a previouslydeveloped model but is improved in order to take into account intense boiling regimes (in particular nucleate boiling). Moreover, the criteria characterizing the transition between different flow regimes were completed. Currently, the French IRSN sets up two experimental facilities, PEARL and PRELUDE. The aim is to predict the consequences of the reflooding of a severely damaged reactor core where a large part of the core has collapsed and formed a debris bed e.g. particles with characteristic length-scale: 1 to 5mm. This means the prediction of debris coolability, front propagation and steam production during the quenching after the water injection. A series of experiments performed in 2010-2012 at the PRELUDE facility has provided a large amount of new data that are summarized. On the basis of those experimental results, the thermal hydraulic features of the quench front have been analyzed and the intensity of heat transfer regimes is estimated. A three-equation model for the twophase flow in a heat-generating porous medium was validated. The quantitative validation of model with experimental results was realized and showed that the model provides satisfactory results. The model is able to predict the quench front velocity in the core, steam production (instantaneous and cumulated) as well as the pressure increase during reflood for different particle diameters and different injection liquid flows.
3

Study of water injection with evaporation in a heterogeneous highly degraded nuclear reactor core / Etude de l'injection d'eau avec évaporation dans un cœur de réacteur nucléaire hétérogène hautement dégradé

Swaidan, Ali 05 February 2018 (has links)
Les accidents graves résultant de la fusion d’un coeur de réacteur nucléaire doivent être anticipés pour améliorer l’efficacité de leur mitigation. De tels accidents sont survenus à TMI-2 (1979) et à Fukushima (2011). Suite à un accident de perte de refroidissement, l’échauffement du coeur et l’oxydation de la gaine de combustible suivie d’un renoyage (injection d’eau) peuvent entraîner l’effondrement des barres de combustible et la formation d’un lit de débris dans le coeur. La vapeur produite lors du renoyage peut activer l’oxydation exothermique du Zircaloy, entraînant la fusion partielle des matériaux. Cette évolution engendre des zones à porosité réduite limitant la pénétration de l’eau et/ou des zones imperméables. Dans cette situation, l’efficacité de l’injection d’eau dans le coeur pour arrêter la progression de la dégradation et empêcher la fusion du coeur du réacteur peut être considérablement réduite. Dans ce cadre, l’IRSN a lancé le programme PEARL visant à étudier la thermohydraulique du renoyage des lits de débris chauds entourés d’une zone plus perméable simulant la présence de zones intactes ou moins endommagées dans le coeur. Dans cette thèse, les expériences PEARL ont été modélisées et simulées avec ICARE/CATHARE pour évaluer l’évolution d’un renoyage d’un lit de débris surchauffé entouré d’un bypass de perméabilité plus grande. La thermohydraulique du processus a été analysée et l’effet de différents paramètres (géométrie, conditions aux limites) sur le comportement de renoyage a été évalué. Sous certaines conditions, l’entraînement de l’eau dans le bypass a été identifié et évalué. Un modèle analytique a été mis au point ensuite pour étudier de façon approfondie le renoyage d’un milieu poreux hétérogène surchauffé composé de deux lits de débris de perméabilité et de porosité différentes et pour décrire l’entraînement de l’eau dans le bypass. Ce modèle calcule les principales variables caractérisant le processus de renoyage, telles que la vitesse du front de trempe, le taux de conversion eau-vapeur et le débit d’eau entraîné dans le bypass.Il fournit de bons résultats qualitatifs et quantitatifs concernant la redistribution du débit d’eau par rapport aux résultats expérimentaux. Ce modèle a plusieurs avantages. Il est écrit sous une forme plutôt générale incluant les termes de correction de Forchheimer et les termes croisés non nuls dans l’équation de Darcy-Forchheimer généralisée. Les différentes options des équations de quantité de mouvement proposées, y compris les changements dans les corrélations et les lois de frottement interfacial, peuvent être testées facilement. La comparaison des calculs avec les résultats expérimentaux indique qu’il est nécessaire d’inclure une loi de frottement interfacial pour obtenir de bonnes prédictions. L’extrapolation à l’échelle du réacteur est simple et des calculs ont été effectués pour évaluer l’impact des paramètres géométriques du lit de débris (granulométrie, porosité, dimensions) ainsi que les conditions thermiques et hydrauliques (température, pression, débit d’injection). Ainsi, le modèle est très utile pour estimer le temps de trempe total et latempérature maximale qui pourraient être atteinte dans le lit de débris à grande échelle. Cela permet d’évaluer la probabilité de réussite du renoyage d’un lit de débris chauds formé lors d’un scénario accidentel hypothétique. / Severe accidents arising from the fusion of a nuclear reactor core must be anticipated to enhance the efficiency of their mitigation. Such accidents have occurred at TMI-2 (1979) and Fukushima (2011). Following a loss of coolant accident, core heating and oxidation of the fuel cladding followed by reflooding (injection of water) may lead to the collapse of fuel rods and formation of porous debris bed in the core. Steam produced upon reflooding may activate the exothermic oxidation of Zircaloy leading to partial melting of materials. Such evolution generates zones with reduced porosity limiting coolant penetration and/or impermeable blocked zones. In this situation, the efficiency of injecting water into the core to stop the progress of degradation and prevent the reactor core melting may be significantly reduced. In this scope, IRSN launched PEARL program to investigate the thermal hydraulics of reflooding of hot debris beds surrounded by a more permeable zone simulating the presence of intact or less damaged zones in the core. The PEARL experiments were modeled and simulated using ICARE/CATHARE code to assess the evolution of a bottom reflooding of a superheated debris bed surrounded by a bypass of larger permeability. The thermal hydraulics of the quenching process has been analyzed and the effect of each of the initial conditions on the reflooding behavior was assessed. The effect of pressure was investigated and related to the entrainment of injected water at quench front level into the bypass. An analytical model was then developed to investigate thoroughly the reflooding of a superheated heterogeneous porous medium, composed of two layers of contrasting permeability and porosity, and to describe the water entrainment in the bypass. This model computes the main variables characterizing the reflooding process such as quench front velocity, water-to-steam conversion ratio, and the flow rate of water entrained in the bypass. It provides good qualitative and quantitative results for the two-phase flow redistribution as compared to experimental results. This model has several advantages. It is written in a rather general form including the Forchheimer correction terms and non-zero cross-terms in the generalized Darcy-Forchheimer momentum equation. Variations of proposed momentum equations including changes in correlations andinterfacial friction laws can be tested easily and efficiently. Comparison of the calculations against experimental results indicated that it is necessary to include an interfacial friction law to obtain good predictions. This model allows performing fast evaluations of the efficiency of cooling bycomputing the fraction of the injected flow rate that participates in cooling. Upscaling to the reactor scale is straightforward and calculations were performed to assess the impact of geometric parameters of the debris bed (particle size, porosity, dimensions) as well as thermal hydraulic conditions (temperature, pressure, injection flow rate) on the reflooding process. Thus the model is very useful to estimate the total quenching time and the maximum temperature that could be reached by the hot debris bed at large scales. This allows assessing the probability of a successful quenching of a hot debris bed formed during a hypothetical accidental scenario.

Page generated in 0.0245 seconds