• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 976
  • 461
  • 163
  • 158
  • 85
  • 79
  • 54
  • 30
  • 14
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • Tagged with
  • 2610
  • 974
  • 357
  • 313
  • 259
  • 204
  • 201
  • 183
  • 172
  • 148
  • 136
  • 133
  • 122
  • 115
  • 111
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Synthetically lethal interactions classify novel genes in postreplication repair in <i>Saccharomyces cerevisiae</i>

Barbour, Leslie 25 February 2005 (has links)
<p>Both prokaryotic and eukaryotic cells are equipped with DNA repair mechanisms to protect the integrity of their genome in case of DNA damage. In the eukaryotic organism <i>Saccharomyces cerevisiae</i>, MMS2 encodes a ubiquitin-conjugating enzyme variant protein belonging to the RAD6 repair pathway; MMS2 functions in error-free postreplication repair (PRR), a subpathway parallel to REV3 mutagenesis. A mutation in MMS2 does not result in extreme sensitivity to DNA damaging agents; however, deletion of both subpathways of PRR results in a synergistic phenotype. By taking advantage of the synergism between error-free PRR and mutagenesis pathway mutations, a conditional synthetic lethal screen was used to identify novel genes genetically involved in PRR. A synthetic lethal screen was modified to use extremely low doses of MMS that would not affect the growth of single mutants, but would effectively kill the double mutants. Fifteen potential mutants were characterized, of which twelve were identified as known error-prone PRR genes. Characterization of mutations in strains SLM-9 and SLM-11, that are conditionally synthetically lethal with mms2Ä, revealed functions for both checkpoints and mating-type heterozygosity in regulating PRR. Cell cycle checkpoints monitor the integrity of the genome and ensure that cell cycle progression is deferred until chromosome damage is repaired. The checkpoint genes genetically interact with both the error-free and error-prone branches of PRR, potentially for delaying cell cycle progression to allow time for DNA repair, and for signaling the stage of the cell cycle and thus DNA content. Other potential monitors for DNA content are the a1 and á2 proteins encoded by the mating type genes MATa and MATá, respectively. Diploid cells heterozygous for mating type (a/á) show an increased resistance to UV damage and are more recombination-proficient than haploid cells. Haploid PRR mutants expressing both mating type genes show an increased resistance to DNA-damaging agents. This phenomenon is specific to PRR: it was not seen in excision repair-deficient and recombination-deficient mutants tested. The rescuing effect seen in PRR mutants heterozygous for mating type is likely the result of channeling lesions into a recombination repair pathway and away from the non-operational PRR pathway. Both checkpoint and mating type genes play a role in regulating PRR. Almost certainly these genes are required to monitor the cell cycle stage and DNA content to determine the best mechanism to repair the damaged DNA thus preventing genomic instability.</p>
12

An analysis of the effectiveness of the asset maintenance plan at Spoornet : case study : class diesel locomotives (traction and rolling stock)

De Wet Vorster, Hendrik January 2001 (has links)
Thesis (MTech (Business Administration))--Peninsula Technikon, 2001 / Maintenance of locomotives is the main function of Bellville Locomotive Traction Depot in the Western Cape. Therefore, it is important to have a sound maintenance plan in place, to prevent a negative impact on the availability and reliability of locomotive supply for hauling power to train services. The purpose of the research is to determine the causes of the increased frequency of maintenance through a case study relating to 35-class locomotives. The abnormal increased frequency of wheel change and inter-bogie control repairs on 35-class diesel locomotives is investigated. A research survey was adopted, which included questionnaires and personal interviews based on the literature search. The target group is L&N section, which includes below-deck maintenance, overhaul and change out, repairs to locomotive bogies, frames, wheels, snubbers, inter-bogie control and traction motors. Sixteen people are responsible for all below-deck repairs and service of 52 locomotives. The results of the research will expose the shortcomings of the maintenance plan and propose solutions. This will be achieved by testing the effectiveness of the existing maintenance plan at Spoornet through the identification of the causes for the abnormal increase in wheel changes and inter-bogie control repairs on 35-class diesel locomotives. The outcome from this case study research will be to quantify the benefits arising from the effective application of a maintenance plan.
13

Concrete repair with realkalisation and the management thereof

Tshibangu, W. A. Muzemba. 15 August 2012 (has links)
M.Ing. / Maintaining and repairing building stock, repair and replacement of the infrastructure, has been a facet of the European building industry for more than 50 years. Deterioration of structures to a level that renders them unusable is a more recent occurrence in South Africa. World-wide changes in the proportion of construction expenditure on new construction and repair and refurbishing of existing structures has occurred only the last two decades. Today, nearly 50 % of such expenditure is on repair and renovation in comparison to proportions of 30 % of previous years. Projections indicate that this trend will continue at least to the next coming century. 1171 Such a substantial proportion of construction expenditure must be expected to influence the market for repair materials, specialized techniques and services. Therefore, a good understanding of the all range of modern concrete repair materials, associated techniques and services as well as latest developments in concrete rehabilitation technology is a prerequisite for designers and users of concrete structures. The following pages attempt to present the basic background of modern concrete repair approaches with regard to the intended use of building structures. They will also deal with the management of a repair project with realkalisation as a remediation strategy. The present condition of the Rand Afrikaans University main campus buildings will serve as a case study model.
14

VISUALIZING GENOMIC INSTABILITY: <i>IN SITU</i> DETECTION AND QUANTIFICATION OF MUTATION IN MICE

Hersh, Megan N. 11 October 2001 (has links)
No description available.
15

Epoxy-Based, Rapid Setting Polymer Concretes for use in Military Airfield Repairs

Atwood, Paul 24 October 2023 (has links)
When damaged, military airfields must be repaired quickly so that flying operations can resume. Due to their rapid-setting and high-strength properties, epoxy-based polymer concretes (PC) may provide a good alternative to the portland cement concrete (PCC) rapid repair mixes currently used by the United States Air Force (USAF) for their Rapid Airfield Damage Recovery (RADR) operations. Epoxy-based PCs use epoxy polymers in place of portland cement to bind together aggregate and form the composite concrete. A commercially available epoxy-based PC, referred to as Commercial Product "B" in this thesis, was tested according to the procedures stated in the Tri-Services Pavements Working Group (TSPWG) Manual M 3-270-01.08-2. This manual defines testing protocol to be used for rapidsetting rigid repair materials intended for use on rigid airfield pavement spall repairs. These tests include various ASTM standards for compressive strength, flexural strength, slant-shear bonding strength, modulus of elasticity, coefficient of thermal expansion, and slump. Commercial Product "B" was not able to set and cure within the time limits set by the TSPWG manual, but otherwise surpassed final compressive strength, flexural strength, slant-shear bonding strength, and slump requirements. However, its modulus of elasticity was below the acceptable range, and its coefficient of thermal expansion was several times higher than the maximum allowed value. In addition, a second epoxy-based PC currently under development by Luna Labs and D.S. Brown was tested for compressive strength and, in most mix designs, surpassed the minimum requirements. This PC was also field tested in a series of four (4) 2-feet by 2-feet by 8-inch deep patches placed within an 8-inch thick PCC slab. Three of these patches did not meet minimum compressive strength requirements and none of them exhibited good bonding between the PC repair material and the original PCC slab. Finally, the effect of the surface moisture content of PCC on the bonding strength and chloride ion penetration resistance when PCC is bonded to PC was tested by casting Commercial Product "B" against ordinary PCC under two different moisture conditions: surface saturated dry (SSD) and PCC that had been conditioned at 10% relative humidity (RH) for 48 hours. The bonded samples underwent three- and four-point bond flexural testing and rapid chloride penetration testing (RCPT). The bond flexural testing showed that Commercial Product "B" bonds to PCC better when the PCC has been conditioned at 10% RH rather than being at SSD conditions. No statistically significant difference was detected for RCPT between bonded samples cast under the two surface moisture conditions, but did show that samples of PCC bonded with Commercial Product "B" are less susceptible to chloride ion penetration than samples comprised entirely of PCC. The results of this thesis show that PC may be useful to the USAF for repair airfields as short term repairs, but further work is required to ensure they meet all standards set by TSPWG for rapid repair materials. They also demonstrate that, when possible, a PCC repair surface should be dried completely before PC repair material is cast against it. / Master of Science / When damaged, military airfields must be repaired quickly so that flying operations can resume. Due to their rapid-setting and high-strength properties, epoxy-based polymer concretes (PC) may provide a good alternative to the portland cement concrete (PCC) rapid repair mixes currently used by the United States Air Force (USAF) for their Rapid Airfield Damage Recovery (RADR) operations. Epoxy-based PC use epoxy polymers in place of portland cement to bind together aggregate and form the composite concrete. To test whether epoxy-based PC can be used for RADR or other airfield repair operations, a commercially available epoxy-based PC, titled Commercial Product "B" in this thesis, underwent a battery of tests as specified for potential rapid repair materials in the Tri-Services Pavements Working Group (TSPWG) manual for testing protocol for rapid-setting rigid repair materials. Commercial Product "B" was not able to set and cure within the time limits set by the TSPWG manual but otherwise surpassed final strength, bonding, and workability requirements. However, it is not nearly as stiff as ordinary PCC and it expands and contracts far more than PCC when it undergoes temperature changes. In addition, a second epoxy-based PC currently under development by Luna Labs and D.S. Brown was tested for compressive strength and, in most mix designs, surpassed the minimum requirements. This PC was also field tested in a series of four (4) patches placed within a PCC slab. Three of these patches did not meet minimum compressive strength requirements and none of them exhibited good bonding between the PC repair material and the original PCC slab. Finally, the effect of the surface moisture content of PCC on the bonding strength and resistance to chloride ions, often found in de-icing agents, when PCC is bonded to PC was tested by casting Commercial Product "B" against ordinary PCC under two different moisture conditions: surface saturated dry (SSD) and PCC that had been conditioned at 10% relative humidity (RH). The bonded samples underwent bond flexural testing and rapid chloride penetration testing (RCPT). The bond flexural testing showed that Commercial Product "B" bonds to PCC better when the PCC has been conditioned at 10% RH rather than being at SSD conditions. No statistically significant difference was detected for RCPT between bonded samples cast under the two surface moisture conditions but did show that samples of PCC bonded with Commercial Product "B" are less susceptible to chloride ion penetration than samples comprised entirely of PCC. The results of this thesis show that PC may be useful to the USAF for repair airfields as short term repairs, but further work is required to ensure they meet all standards set by TSPWG for rapid repair materials. They also demonstrate that, when possible, a PCC repair surface should be dried completely before PC repair material is cast against it.
16

Roles of p53 and p16 tumor suppressor genes in the cellular response to ultraviolet light

Al-Mohanna, Mai January 2003 (has links)
The role of the tumor suppressors p53 and p16 genes in the cellular response to Ultraviolet light. SUMMARY Proliferating cells respond to DNA damage by concomitantly arresting cellular growth at checkpointsa nd activating DNA repair processesC. ell cycle arrestsa re mediated,i n part, by the inhibition of cyclin-dependent kinases (CDKs), whose function is required for cell cycle progression. p53, p21WAF' and p16`NK4aa re the products of tumor suppressor genes that play important roles during the cellular response to genotoxic stresses. p53 and p16 coding genes have been found mutated or transcriptionally silenced in different cancer types both sporadic and familial. Indeed, p16 has been found to be linked to familial melanoma, whose etiology is related to sun-light induced DNA damage. It is hence important to ascertain whether p53 and p16 are involved in the cellular response to UV damage. In this report I present evidence that p53 is not involved in UV-induced cellular growth arrest in late G1 phase. This has been demonstrated in HeLa cells synchronized at the G1/S border by aphidicolin, followed by UV exposure. Interestingly, the length of this p53-independent G1 arrest has been shown to be UV dose-dependent. Similar results were also obtained with other p53-deficient cell lines, including the human promyelocytic leukemia HL-60 and mouse p53 knock-out cells. As expected, all of these cell lines were defective in v-ray-induced cell growth arrest at late G1Using different assays I also show here that p16-compromised U20S osteosarcoma cells are deficient in the removal of UV damage, as compared to their isogenic derivatives EH1 and EH2 counterparts that express p16. This deficiency is associated with a high level of UV-induced apoptosis, which is significantly reduced in the p16-expressing EH I, EH2 and p16+/+ mouse embryonic fibroblast (MEF) cells, indicating that p16 protects cells from undergoing apoptosis in response to UV light. Importantly, this reduction in UV-mediated apoptosis was associated with down-regulation of the pro-apoptotic Bax protein, with no effect on Bcl-2 expression, suggesting that this anti-apoptotic role of p16 is mediated via the intrinsic p53-dependent mitochondrial pathway. On the other hand, p16 sensitized cells to cisplatin-mediated apoptosis through Bcl-2 decline. Furthermore, I show that p16 is involved in UV-related G1 checkpoint and controls the expression and UV-dependent activation of another CDK inhibitor, p21wAFI. Importantly, this relationship between p16 and p21 exists also in MEFs, suggesting that it is not cell type- or species-dependent. These results indicate that, in addition to its role in cell cycle control and senescence, p16 also plays an important role in the cellular response to UV damage, possibly by inhibiting apoptosis and facilitating cell cycle arrest and photolesion removal. The data presented here provide further insights into the role of p53 and p16, as tumor suppressors, in carcinogenesis and have potential implications for future therapy strategies
17

Transcriptional regulation of topoisomerase II

Hochhauser, Daniel January 1993 (has links)
No description available.
18

Modulating immune response inside biomaterial-based nerve conduits to stimulate endogenous peripheral nerve regeneration

Mokarram-Dorri, Nassir 27 May 2016 (has links)
Injuries to the peripheral nervous system (PNS) are major and common source of disability, impairing the ability to move muscles and/or feel normal sensations, or resulting in painful neuropathies. Annually traumatic nerve injuries resulting from collisions, gunshot wounds, fractures, motor vehicle accidents, lacerations, and other forms of penetrating trauma, affected more than 250,000 patients just in the U.S. The clinical gold standard to bridge long non-healing nerve gaps is to use a nerve autograft- typically the patient’s own sural nerve. However, autografts are not ideal because of the need for secondary surgery to ‘source’ the nerve, loss of function at the donor site, lack of appropriate source nerve in diabetic patients, neuroma formation, and the need for multiple graft segments. Despite our best efforts, finding alternative ‘nerve bridges’ for peripheral nerve repair remains challenging – of the four nerve ‘tubes’ FDA approved for use in the clinic, none is typically used to bridge gaps longer than 10 mm due to poor outcomes. Hence, there is a compelling need to design alternatives that match or exceed the performance of autografts across critically sized nerve gaps. Here we demonstrate that early modulation of innate immune response at the site of peripheral nerve injury inside biomaterials-based conduit can favorably bias the endogenous regenerative potential after injury that obviates the need for the downstream modulation of multiple factors and has significant implications for the treatment of long peripheral nerve gaps. Moreover, our study strongly suggests that more than the extent of macrophage presence, their specific phenotype at the site of injury influence the regenerative outcomes. This research will advance our knowledge regarding peripheral nerve regeneration, and help developing technologies that are likely to improve clinical outcomes after peripheral nerve injury. The significant results presented here are complementary to a growing body of evidence showing the direct correlation between macrophage phenotype and the regeneration outcome of injured tissues.
19

Defective responses of a simian virus 40-transformed Indian muntjac cell line to DNA damaging agents

Musk, Stephen Rolin Robert January 1987 (has links)
No description available.
20

Stability and failure of internal fixation systems

Shelton, Julia C. January 1989 (has links)
No description available.

Page generated in 0.0327 seconds