• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bilateral Muscle Oxygenation Kinetics In Response To Repeat Sprint Cycling In Strong And Weak Individuals

Abbott, John 01 May 2020 (has links)
Repeat sprint ability has been investigated thoroughly, however optimal training methodology to improve RSA remains elusive. Both kinetic and physiological viewpoints have been used to scrutinize aspects of RSA including, initial sprint performance (anaerobic power), maximal cardiorespiratory fitness (VO2max), lactate threshold, anaerobic capacity (mean power), muscle activation (EMG), and local muscle oxygenation kinetics. To our knowledge no study has utilized maximal strength levels as a separate factor among a homogenous group of cardiorespiratory fitness individuals (as determined by peak VO2 during RSA). The purpose of this study was to better understand the relationship between maximal strength, muscular characteristics, and cycling RSA- respective to muscle oxygenation responses. Fifteen participants completed fifteen 10-second maximal effort sprints on a cycle ergometer interspersed with 30-seconds passive recovery. Respiratory, muscle oxygenation, and kinetic responses were monitored continuously and evaluated relationships with maximal strength and muscular architecture as determined by isometric mid-thigh pull and ultrasonography respectively. A series of 2 x 15 mixed design, group x time, ANOVA’s were used to evaluate the effects of group and or sprint on muscle oxygenation kinetics. Strong individuals were found to have significantly greater levels of muscle oxygenation usage, recovery and the respective rates; p = 0.01, p = 0.02, p

Page generated in 0.0689 seconds