Spelling suggestions: "subject:"repeated remeasurements"" "subject:"repeated aremeasurements""
11 |
Modelos estatísticos para dados politômicos nominais em estudos longitudinais com uma aplicação à área agronômica / Statistical models for nominal polytomous data in longitudinal studies with an application to agronomyMenarin, Vinicius 14 January 2016 (has links)
Estudos em que a resposta de interesse é uma variável categorizada são bastante comuns nas mais diversas áreas da Ciência. Em muitas situações essa resposta é composta por mais de duas categorias não ordenadas, denominada então de uma variável politômica nominal, e em geral o objetivo do estudo é associar a probabilidade de ocorrência de cada categoria aos efeitos de variáveis explicativas. Ademais, existem tipos especiais de estudos em que os dados são coletados diversas vezes para uma mesma unidade amostral ao longo do tempo, os estudos longitudinais. Estudos assim requerem o uso de modelos estatísticos que considerem em sua formulação algum tipo de estrutura que suporte a dependência que tende a surgir entre observações feitas em uma mesma unidade amostral. Neste trabalho são abordadas duas extensões do modelo de logitos generalizados, usualmente empregado quando a resposta é politômica nominal com observações independentes entre si. A primeira consiste de uma modificação das equações de estimação generalizadas para dados nominais que se utiliza de razões de chances locais para descrever a dependência entre as observações da variável resposta politômica ao longo dos diversos tempos observados. Este tipo de modelo é denominado de modelo marginal. A segunda proposta abordada consiste no modelo de logitos generalizados com a inclusão de efeitos aleatórios no preditor linear, que também leva em conta uma dependência entre as observações. Esta abordagem caracteriza o modelo de logitos generalizados misto. Há diferenças importantes inerentes às interpretações dos modelos marginais e mistos, que são discutidas e que devem ser levadas em consideração na escolha da abordagem adequada. Ambas as propostas são aplicadas em um conjunto de dados proveniente de um experimento da área agronômica realizado em campo, conduzido sob um delineamento casualizado em blocos com esquema fatorial para os tratamentos. O experimento foi acompanhado ao longo de seis estações do ano, caracterizando assim uma estrutura longitudinal, sendo a variável resposta o tipo de vegetação observado no campo (touceiras, plantas invasoras ou espaços vazios). Os resultados encontrados são satisfatórios, embora a dependência presente nos dados não seja tão caracterizada; por meio de testes como da razão de verossimilhanças e de Wald diversas diferenças significativas entre os tratamentos foram encontradas. Ainda, devido às diferenças metodológicas das duas abordagens, o modelo marginal baseado nas equações de estimação generalizadas mostra-se mais adequado para esses dados. / Studies where the response is a categorical variable are quite common in many fields of Sciences. In many situations this response is composed by more than two unordered categories characterizing a nominal polytomous outcome and, in general, the aim of the study is to associate the probability of occurrence of each category to the effects of variables. Furthermore, there are special types of study where many measurements are taken over the time for the same sampling unit, called longitudinal studies. Such studies require special statistical models that consider some kind of structure that support the dependence that tends to arise from the repeated measurements for the same sampling unit. This work focuses on two extensions of the baseline-category logit model usually employed in cases when there is a nominal polytomous response with independent observations. The first one consists in a modification of the well-known generalized estimating equations for longitudinal data based on local odds ratios to describe the dependence between the levels of the response over the repeated measurements. This type of model is also known as a marginal model. The second approach adds random effects to the linear predictor of the baseline-category logit model, which also considers a dependence between the observations. This characterizes a baseline-category mixed model. There are substantial differences inherent to interpretations when marginal and mixed models are compared, what should be considered in the choice of the most appropriated approach for each situation. Both methodologies are applied to the data of an agronomic experiment installed under a complete randomized block design with a factorial arrangement for the treatments. It was carried out over six seasons, characterizing the longitudinal structure, and the response is the type of vegetation observed in field (tussocks, weeds or regions with bare ground). The results are satisfactory, even if the dependence found in data is not so strong, and likelihood-ratio and Wald tests point to several differences between treatments. Moreover, due to methodological differences between the two approaches, the marginal model based on generalized estimating equations seems to be more appropriate for this data.
|
12 |
Modelos estatísticos para dados politômicos nominais em estudos longitudinais com uma aplicação à área agronômica / Statistical models for nominal polytomous data in longitudinal studies with an application to agronomyVinicius Menarin 14 January 2016 (has links)
Estudos em que a resposta de interesse é uma variável categorizada são bastante comuns nas mais diversas áreas da Ciência. Em muitas situações essa resposta é composta por mais de duas categorias não ordenadas, denominada então de uma variável politômica nominal, e em geral o objetivo do estudo é associar a probabilidade de ocorrência de cada categoria aos efeitos de variáveis explicativas. Ademais, existem tipos especiais de estudos em que os dados são coletados diversas vezes para uma mesma unidade amostral ao longo do tempo, os estudos longitudinais. Estudos assim requerem o uso de modelos estatísticos que considerem em sua formulação algum tipo de estrutura que suporte a dependência que tende a surgir entre observações feitas em uma mesma unidade amostral. Neste trabalho são abordadas duas extensões do modelo de logitos generalizados, usualmente empregado quando a resposta é politômica nominal com observações independentes entre si. A primeira consiste de uma modificação das equações de estimação generalizadas para dados nominais que se utiliza de razões de chances locais para descrever a dependência entre as observações da variável resposta politômica ao longo dos diversos tempos observados. Este tipo de modelo é denominado de modelo marginal. A segunda proposta abordada consiste no modelo de logitos generalizados com a inclusão de efeitos aleatórios no preditor linear, que também leva em conta uma dependência entre as observações. Esta abordagem caracteriza o modelo de logitos generalizados misto. Há diferenças importantes inerentes às interpretações dos modelos marginais e mistos, que são discutidas e que devem ser levadas em consideração na escolha da abordagem adequada. Ambas as propostas são aplicadas em um conjunto de dados proveniente de um experimento da área agronômica realizado em campo, conduzido sob um delineamento casualizado em blocos com esquema fatorial para os tratamentos. O experimento foi acompanhado ao longo de seis estações do ano, caracterizando assim uma estrutura longitudinal, sendo a variável resposta o tipo de vegetação observado no campo (touceiras, plantas invasoras ou espaços vazios). Os resultados encontrados são satisfatórios, embora a dependência presente nos dados não seja tão caracterizada; por meio de testes como da razão de verossimilhanças e de Wald diversas diferenças significativas entre os tratamentos foram encontradas. Ainda, devido às diferenças metodológicas das duas abordagens, o modelo marginal baseado nas equações de estimação generalizadas mostra-se mais adequado para esses dados. / Studies where the response is a categorical variable are quite common in many fields of Sciences. In many situations this response is composed by more than two unordered categories characterizing a nominal polytomous outcome and, in general, the aim of the study is to associate the probability of occurrence of each category to the effects of variables. Furthermore, there are special types of study where many measurements are taken over the time for the same sampling unit, called longitudinal studies. Such studies require special statistical models that consider some kind of structure that support the dependence that tends to arise from the repeated measurements for the same sampling unit. This work focuses on two extensions of the baseline-category logit model usually employed in cases when there is a nominal polytomous response with independent observations. The first one consists in a modification of the well-known generalized estimating equations for longitudinal data based on local odds ratios to describe the dependence between the levels of the response over the repeated measurements. This type of model is also known as a marginal model. The second approach adds random effects to the linear predictor of the baseline-category logit model, which also considers a dependence between the observations. This characterizes a baseline-category mixed model. There are substantial differences inherent to interpretations when marginal and mixed models are compared, what should be considered in the choice of the most appropriated approach for each situation. Both methodologies are applied to the data of an agronomic experiment installed under a complete randomized block design with a factorial arrangement for the treatments. It was carried out over six seasons, characterizing the longitudinal structure, and the response is the type of vegetation observed in field (tussocks, weeds or regions with bare ground). The results are satisfactory, even if the dependence found in data is not so strong, and likelihood-ratio and Wald tests point to several differences between treatments. Moreover, due to methodological differences between the two approaches, the marginal model based on generalized estimating equations seems to be more appropriate for this data.
|
13 |
Contribution des modèles à classes latentes à l’étude de la répartition spatio-temporelle des vecteurs de Paludisme et à l’étude temporelle de l’observance aux antirétroviraux chez les patients VIH / Contribution of latent class models to the study of the spatio-temporal distribution of malaria vectors and to the temporal study of adherence to antiretroviral treatment by HIV patientsBoussari, Olayidé 16 June 2014 (has links)
Ce travail est construit autour de deux problématiques de santé relatives aux deux plus grandes pandémies qui sévissent en Afrique sub-saharienne : i) l'hétérogénéité rencontrée dans la répartition spatiale et temporelle des vecteurs de paludisme ; ii) la variabilité dans l'observance au traitement antirétroviral par des personnes vivant avec le virus de l'immunodéficience humaine. Sur le plan méthodologique, ces deux problèmes se rapportent à la prise en compte de l'hétérogénéité dans la modélisation de données issues de mesures répétées ; ils nécessitent en outre le développement d'outils statistiques permettant de distinguer à partir des données, des sous-groupes (de localités, d'individus. . .) homogènes indispensables pour rendre plus efficientes les mesures de santé souvent déployer par les praticiens dans le cadre de la lutte contre le paludisme ou le VIH/SIDA. Les modèles de mélanges finis, grâce à leur flexibilité, sont des outils capables de fournir non seulement de bonnes estimations en présence d'une grande hétérogénéité dans les observations mais aussi une bonne partition des unités statistiques. Nous les distinguons, parmi d'autres méthodes, comme étant adaptés aux problématiques du présent travail. Deux applications de ces modèles aux données issues de capture de moustiques ont permis de modéliser la répartition spatiale et temporelle de vecteurs de paludisme et de dégager une méthode simple d'évaluation d'impact de mesures de lutte anti vectorielle. Nous introduisons la notion de _trajectoires de variances_ dans une troisième application portant sur des données d'observance aux traitements antirétroviraux par des personnes vivant avec le virus de l'immunodéficience humaine / This work focuses on two health issues relating to two major pandemics in sub- Saharan Africa : i) the heterogeneity encountered in the spatial and temporal distribution of malaria vectors ; ii) the variability in adherence to antiretroviral treatment by people living with the human immunodeficiency virus. Methodologically, these two problems are related to the consideration of the heterogeneity in the modeling of data from repeated measurements. They also require the development of statistical tools to distinguish from the data, homogeneous clusters of localities, individuals. . . that are needed to make more efficient health measures often deployed by practitioners in the fight against malaria and HIV/AIDS. The finite mixture models, due to their flexibility, are statistical tools that not only provide good estimates in the presence of heterogeneity in the observations but also a good classification of statistical units. We show that they are able to deal with the problematics of our study. The spatial and temporal distributions of malaria vectors are modeled through two different applications of finite mixture models and a simple tool to evaluate the impact of vector control methods is generated. We introduce a ”variance trajectories” method in a third application of finite mixture models to data on adherence to antiretroviral therapy by people living with human immunodeficiency virus
|
14 |
Transient engine model for calibration using two-stage regression approachKhan, Muhammad Alam Z. January 2011 (has links)
Engine mapping is the process of empirically modelling engine behaviour as a function of adjustable engine parameters, predicting the output of the engine. The aim is to calibrate the electronic engine controller to meet decreasing emission requirements and increasing fuel economy demands. Modern engines have an increasing number of control parameters that are having a dramatic impact on time and e ort required to obtain optimal engine calibrations. These are further complicated due to transient engine operating mode. A new model-based transient calibration method has been built on the application of hierarchical statistical modelling methods, and analysis of repeated experiments for the application of engine mapping. The methodology is based on two-stage regression approach, which organise the engine data for the mapping process in sweeps. The introduction of time-dependent covariates in the hierarchy of the modelling led to the development of a new approach for the problem of transient engine calibration. This new approach for transient engine modelling is analysed using a small designed data set for a throttle body inferred air ow phenomenon. The data collection for the model was performed on a transient engine test bed as a part of this work, with sophisticated software and hardware installed on it. Models and their associated experimental design protocols have been identi ed that permits the models capable of accurately predicting the desired response features over the whole region of operability. Further, during the course of the work, the utility of multi-layer perceptron (MLP) neural network based model for the multi-covariate case has been demonstrated. The MLP neural network performs slightly better than the radial basis function (RBF) model. The basis of this comparison is made on assessing relevant model selection criteria, as well as internal and external validation ts. Finally, the general ability of the model was demonstrated through the implementation of this methodology for use in the calibration process, for populating the electronic engine control module lookup tables.
|
15 |
Widening the applicability of permutation inferenceWinkler, Anderson M. January 2016 (has links)
This thesis is divided into three main parts. In the first, we discuss that, although permutation tests can provide exact control of false positives under the reasonable assumption of exchangeability, there are common examples in which global exchangeability does not hold, such as in experiments with repeated measurements or tests in which subjects are related to each other. To allow permutation inference in such cases, we propose an extension of the well known concept of exchangeability blocks, allowing these to be nested in a hierarchical, multi-level definition. This definition allows permutations that retain the original joint distribution unaltered, thus preserving exchangeability. The null hypothesis is tested using only a subset of all otherwise possible permutations. We do not need to explicitly model the degree of dependence between observations; rather the use of such permutation scheme leaves any dependence intact. The strategy is compatible with heteroscedasticity and can be used with permutations, sign flippings, or both combined. In the second part, we exploit properties of test statistics to obtain accelerations irrespective of generic software or hardware improvements. We compare six different approaches using synthetic and real data, assessing the methods in terms of their error rates, power, agreement with a reference result, and the risk of taking a different decision regarding the rejection of the null hypotheses (known as the resampling risk). In the third part, we investigate and compare the different methods for assessment of cortical volume and area from magnetic resonance images using surface-based methods. Using data from young adults born with very low birth weight and coetaneous controls, we show that instead of volume, the permutation-based non-parametric combination (NPC) of thickness and area is a more sensitive option for studying joint effects on these two quantities, giving equal weight to variation in both, and allowing a better characterisation of biological processes that can affect brain morphology.
|
Page generated in 0.0573 seconds