Spelling suggestions: "subject:"reperfusion"" "subject:"eperfusion""
61 |
Mechanisms of cardiac dysfunction and changes in sarcolemmal Na+- K+-ATPase activity in hearts subjected to ischemia reperfusion injurySingh, Raja Balraj 02 December 2008 (has links)
ABSTRACT
To understand the mechanisms underlying cardiac dysfunction during ischemia reperfusion (I/R) injury, we tested the hypothesis that oxidative stress and defects in endothelium play a critical role in the activation of calpain and matrix metalloproteinases (MMP), inhibition of sarcolemmal (SL) Na+-K+-ATPase, and induction of cardiac dysfunction during I/R injury. It was observed that I/R induced depression in cardiac function and SL Na+-K+-ATPase activity was greater in hearts perfused at constant flow than in hearts perfused at constant pressure. Such a difference was associated with increased calpain activity as well as decreased endothelial nitric oxide synthase protein content and in nitric oxide production. The depression in Na+-K+-ATPase activity and decrease in protein content of Na+-K+-ATPase isoforms in I/R hearts were associated with an increase in calpain activity and translocation of calpain isoforms (I and II) from the cytosol to SL membrane as well as changes in the distribution of calpastatin. I/R induced alterations were Ca2+-dependent and were prevented by treatment with calpain inhibitors, MDL28170 and Leupeptin (Leu). These results suggest that depressions in cardiac function and SL Na+-K+-ATPase activity in the I/R hearts may be due to endothelial dysfunction as well as changes in the activity and translocation of calpain.
In another set of experiments, we examined the role of oxidative stress in activation of calpain during I/R and its association with changes in the activity of MMP. Our results show depression of cardiac function and Na+-K+-ATPase activity in I/R hearts were associated with increased calpain and MMP activities. These alterations due to I/R were attenuated by ischemic preconditioning as well as treatment with antioxidant, N-acetylcysteine (NAC) and mercaptopropionylglycine (MPG). Treatment of I/R hearts with MMP inhibitor doxycycline (Dox) improved I/R-induced changes in cardiac function and Na+-K+-ATPase activity without affecting the calpain activation while treatment with calpain inhibitors, Leu and MDL 28170, reduced the MMP activity significantly in addition to attenuating the I/R-induced depression in Na+-K+-ATPase activity. These results suggests that alterations in Na+-K+-ATPase activity in I/R hearts are associated with oxidative stress and intracellular Ca2+ overload induced activation of calpain and MMP.
|
62 |
SLIT2 Prevents Renal Ischemia Reperfusion Injury in MiceChaturvedi, Swasti 27 November 2013 (has links)
The Slit family of secreted proteins act as axonal repellents during embryogenesis. Slit2 via its receptor, Roundabout-1, also inhibits chemotaxis of multiple leukocyte subsets. Using static and microfluidic shear assays, we found that Slit2 inhibited multiple steps required to recruit circulating neutrophils. Slit2 blocked capture and firm adhesion of human neutrophils to and transmigration across inflamed primary vascular endothelial cells. To determine the response of Slit2 in renal ischemia reperfsuion injury, Slit2 was administered prior to bilateral renal pedicle clamping in mice. This led to significant decreases in both renal tubular necrosis score and neutrophil infiltration. Administration of Slit2 also prevented elevation of plasma creatinine following injury in a dose-dependent manner. Furthermore, administration of Slit2 did not increase hepatic bacterial load in mice infected with L.monocytogenes infection. Collectively, these data demonstrate Slit2 as an exciting therapeutic molecule to combat renal ischemia reperfusion injury without compromising protective host innate immune functions.
|
63 |
SLIT2 Prevents Renal Ischemia Reperfusion Injury in MiceChaturvedi, Swasti 27 November 2013 (has links)
The Slit family of secreted proteins act as axonal repellents during embryogenesis. Slit2 via its receptor, Roundabout-1, also inhibits chemotaxis of multiple leukocyte subsets. Using static and microfluidic shear assays, we found that Slit2 inhibited multiple steps required to recruit circulating neutrophils. Slit2 blocked capture and firm adhesion of human neutrophils to and transmigration across inflamed primary vascular endothelial cells. To determine the response of Slit2 in renal ischemia reperfsuion injury, Slit2 was administered prior to bilateral renal pedicle clamping in mice. This led to significant decreases in both renal tubular necrosis score and neutrophil infiltration. Administration of Slit2 also prevented elevation of plasma creatinine following injury in a dose-dependent manner. Furthermore, administration of Slit2 did not increase hepatic bacterial load in mice infected with L.monocytogenes infection. Collectively, these data demonstrate Slit2 as an exciting therapeutic molecule to combat renal ischemia reperfusion injury without compromising protective host innate immune functions.
|
64 |
The Role of Gap Junctions in Brain Glucose Deprivation and Glucose ReperfusionSugumar, Sonia 07 July 2014 (has links)
Hypoglycemia is a severe side effect of insulin overdose in the diabetic population and can result in various neurological sequalae including seizures, coma, and brain death. There is still a limited understanding of the generation and propagation of hypoglycemic seizures, which may exacerbate hypoglycemia-induced neuronal damage. Moreover, glucose reperfusion after a period of transient hypoglycemia has been shown to cause neuronal hyperexcitability which can have further damaging effects. Gap junctional communication can be involved in the spread of hypoglycemic injury in two ways: 1) by providing a cytoplasmic continuity in which seizures can easily propagate and 2) by engaging the astrocytic network in metabolic compensation as well as enhancing astrocytic buffering of K+. This study aims to investigate the role that gap junctions play during brain energy deprivation. Results from these experiments show that gap junction blockade can have a neuroprotective role during hypoglycemia and glucose reperfusion.
|
65 |
Mechanisms of cardiac dysfunction and changes in sarcolemmal Na+- K+-ATPase activity in hearts subjected to ischemia reperfusion injurySingh, Raja Balraj 02 December 2008 (has links)
ABSTRACT
To understand the mechanisms underlying cardiac dysfunction during ischemia reperfusion (I/R) injury, we tested the hypothesis that oxidative stress and defects in endothelium play a critical role in the activation of calpain and matrix metalloproteinases (MMP), inhibition of sarcolemmal (SL) Na+-K+-ATPase, and induction of cardiac dysfunction during I/R injury. It was observed that I/R induced depression in cardiac function and SL Na+-K+-ATPase activity was greater in hearts perfused at constant flow than in hearts perfused at constant pressure. Such a difference was associated with increased calpain activity as well as decreased endothelial nitric oxide synthase protein content and in nitric oxide production. The depression in Na+-K+-ATPase activity and decrease in protein content of Na+-K+-ATPase isoforms in I/R hearts were associated with an increase in calpain activity and translocation of calpain isoforms (I and II) from the cytosol to SL membrane as well as changes in the distribution of calpastatin. I/R induced alterations were Ca2+-dependent and were prevented by treatment with calpain inhibitors, MDL28170 and Leupeptin (Leu). These results suggest that depressions in cardiac function and SL Na+-K+-ATPase activity in the I/R hearts may be due to endothelial dysfunction as well as changes in the activity and translocation of calpain.
In another set of experiments, we examined the role of oxidative stress in activation of calpain during I/R and its association with changes in the activity of MMP. Our results show depression of cardiac function and Na+-K+-ATPase activity in I/R hearts were associated with increased calpain and MMP activities. These alterations due to I/R were attenuated by ischemic preconditioning as well as treatment with antioxidant, N-acetylcysteine (NAC) and mercaptopropionylglycine (MPG). Treatment of I/R hearts with MMP inhibitor doxycycline (Dox) improved I/R-induced changes in cardiac function and Na+-K+-ATPase activity without affecting the calpain activation while treatment with calpain inhibitors, Leu and MDL 28170, reduced the MMP activity significantly in addition to attenuating the I/R-induced depression in Na+-K+-ATPase activity. These results suggests that alterations in Na+-K+-ATPase activity in I/R hearts are associated with oxidative stress and intracellular Ca2+ overload induced activation of calpain and MMP.
|
66 |
Amelioration of oxidative stress in human endothelial cells by caffeic acid phenethyl ester (CAPE) and fluorinated derivatives (FCAPES) and pharmacokinetic characterization of CAPE and FCAPE in ratsWang, Xinyu, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
67 |
Etablierung und Charakterisierung eines kardialen Ischämie-Reperfusions-Modells das isolierte normotherme hämoperfundierte arbeitende Schweineherz /Habighorst, Britta. January 2005 (has links)
Freie Universiẗat, Diss., 2005--Berlin. / Dateiformat: zip, Dateien im PDF-Format.
|
68 |
Endotoxin from porphyromonas gingivalis improves recovery of the electrically induced Ca2+ transient following ischemia and reperfusion /Fan, Man-hin, Michael. January 2007 (has links)
Thesis (M. Med. Sc.)--University of Hong Kong, 2007.
|
69 |
n-3 PUFAs and reperfusion injury in isolated cardiomyocytes /Jahangiri, Anisa. January 2002 (has links) (PDF)
Thesis (Ph.D.)--University of Adelaide, Dept. of Physiology, 2002. / "September 2002" Bibliography: leaves 207-230.
|
70 |
Retrospektive Evaluierung verschiedener Reperfusionsregime bei Patienten mit akutem Myokardinfarkt mittels eines InfarktregistersOikonomopoulos, Thomas, January 2007 (has links)
Tübingen, Univ., Diss., 2007.
|
Page generated in 0.0496 seconds