• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sistema autônomo para supervisão de missão e segurança de voo em VANTs / Autonomous system for mission control and flight safety in UAVs

Arantes, Jesimar da Silva 23 May 2019 (has links)
O presente documento tem por objetivo apresentar a tese desenvolvida no programa de doutorado em Ciência da Computação e Matemática Computacional do ICMC/USP. Esta tese aborda o desenvolvimento de sistemas autônomos, de baixo custo, para supervisão de missão e segurança de voo em Veículos Aéreos Não Tripulados (VANTs). A supervisão da missão é assegurada através da implementação de um sistema do tipo Mission Oriented Sensor Array (MOSA), responsável pelo adequado cumprimento da missão. A segurança de voo é garantida pelo sistema In-Flight Awareness (IFA), que visa monitorar o funcionamento da aeronave. Os assuntos missão e segurança são complexos e os sistemas MOSA e IFA foram idealizados e desenvolvidos de forma independente, fundamentando-se na ideia de separação de interesses. O desenvolvimento desses sistemas foi baseado em dois modelos de referência: MOSA e IFA, propostos pela literatura. Em trabalhos anteriores da literatura, alguns sistemas do tipo MOSA e IFA foram propostos para situações específicas de missão. Numa outra abordagem, esta tese propõe um único sistema MOSA e IFA capaz de se adequar a um conjunto distinto de missões. Neste trabalho, foi desenvolvida toda arquitetura de comunicação que integra os sistemas MOSA e IFA. No entanto, apenas esses dois sistemas não são suficientes para fazer a execução da missão com segurança, necessitando-se de um sistema capaz de se comunicar com o Piloto Automático (AP) do VANT. Logo, um sistema capaz de enviar requisições e comandos ao AP foi também implementado. Através desses três sistemas, missões autônomas com desvio de obstáculos puderam ser realizadas sem intervenção humana, mesmo diante de situações críticas ao voo. Assegurar os aspectos de segurança e missão pode se tornar conflitante durante o voo, pois em situações emergenciais deve-se abortar a missão. Diferentes estratégias para planejamento e replanejamento de rotas, baseadas em computação evolutiva e heurísticas, foram desenvolvidas e integradas nos sistemas MOSA e IFA. Os sistemas, aqui propostos, foram validados em quatro etapas: (i) experimentos com o simulador de voo FlightGear; (ii) simulações com a técnica Software-In-The-Loop (SITL); (iii) simulações com a técnica Hardware-In- The-Loop (HITL); (iv) voos reais. Na última etapa, os sistemas foram embarcados em dois modelos de VANTs, desenvolvidos pelo grupo de pesquisa. Durante a experimentação, alguns modelos de pilotos automáticos (APM e Pixhawk), computadores de bordo (Raspberry Pi 3, Intel Edison e BeagleBone Black), planejadores de missão e replanejadores de rotas emergenciais foram avaliados. Ao todo, três planejadores de rotas e oito replanejadores são suportados pela plataforma autônoma. O sistema autônomo desenvolvido permite alterar missões com diferentes características de hardware e de software de forma fácil e transparente, sendo, desse modo, uma arquitetura com características plug and play. / This document aims to present the thesis developed in the doctoral program in Computer Science and Computational Mathematics at ICMC/USP. This thesis addresses the development of low- cost autonomous systems for mission supervision and flight safety in Unmanned Aerial Vehicles (UAVs). The mission supervision is ensured through the implementation of a Mission Oriented Sensor Array (MOSA) system, which is responsible for the proper fulfillment of the mission. The flight safety is guaranteed by the In-Flight Awareness (IFA) system, which aims to monitor the aircraft operation. The mission and safety issues are complex, and the MOSA and IFA systems were idealized and developed independently, based on the idea of separation of concerns. The development of these systems was based on two reference models: MOSA and IFA, proposed in the literature. In previous works of the literature, some MOSA and IFA systems have been proposed for specific mission situations. In another approach, this thesis proposes a single MOSA and IFA system capable of adapting to a distinct set of missions. All the communication architecture that integrates the MOSA and IFA systems were developed in this work. However, only these two systems are not sufficient to carry out the mission safely; a system that can communicate with the AutoPilot (AP) of the UAV its also needed. In this way, a system that is capable of sending commands and requests to the AP was implemented in this work. Through these three systems, autonomous missions with a diversion of obstacles could be carried out without human intervention, even in critical situations to the flight. Ensuring the safety and mission aspects can become conflicting during the flight because in hazards situations the mission must be aborted. Different strategies for path planning and path replanning, based on evolutionary computation and heuristics, were developed and integrated into the MOSA and IFA systems. The systems proposed here were validated in four stages: (i) experiments with FlightGear flight simulator; (ii) simulations using Software-In-The-Loop (SITL); (iii) simulations using Hardware- In-The-Loop (HITL); (iv) real flights. In the last stage, the systems were embedded in two models of UAVs, developed by the research group. During the experiment were evaluated some models of autopilots (APM and Pixhawk), companion computers (Raspberry Pi 3, Intel Edison and BeagleBone Black), mission planners and emergency route planners. In all, three route planners and eight replanners are supported by the autonomous platform. The developed autonomous system allows changing missions with different hardware and software characteristics in an easy and transparent way, being, therefore, an architecture with Plug and play characteristics.

Page generated in 0.0897 seconds