• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CHARACTERIZATION OF VIRAL AND HOST PROTEINS AND RNA ELEMENTS IN TOMBUSVIRUS REPLICATION

Pathak, Kunj Bihari 01 January 2011 (has links)
Two thirds of plant viruses are positive-strand RNA viruses including the family Tombusviridae. One of the best-studied members of this family is Tomato bushy stunt virus (TBSV). Like many other viruses, TBSV has much fewer genes when compared to its hosts’ genome. Nevertheless, TBSV utilizes its genome very judiciously. To compensate for a lack of many proteins of its own, it codes for multi-functional replication protein p33 and also co-opts host factors to facilitate its replication. By using recombinant replication proteins p33 and p92 containing single amino acid changes in protein-protein interaction domains (S1 and S2), I demonstrated that the replication proteins are required in sequential steps during virus replication. The in vitro cell-free extract(CFE) based TBSV replication assays revealed that mutations in S1 and S2 domains affected RNA template selection, recruitment and assembly of replicase complex. TBSV replicates on the cytosolic surface of peroxisomal membranes. To identify the host factor involved in this process of transporting viral replication proteins to peroxisome, I tested the peroxisomal transporter proteins for their ability to bind to p33 in vitro, which led to the discovery of Pex19p. Pull-down and co-purification experiments revealed transient nature of p33-Pex19p binding as expected from a transporter. When pex19p was retargeted to mitochondria, a large fraction of p33 was also re-distributed to the mitochondria validating the importance of Pex19p in p33 localization. TBSV also utilizes its genomic RNA for non-template activities during its replication. Accordingly, TBSV RNA serves as a platform for the assembly of replicase complex. To further characterize the regulatory cis-elements involved in this process, I utilized CFE and different TBSV RNA mutants together with recombinant p33 and p92 in vitro replication assays. These experiments revealed the role of RNA recruitment element [RIISL(+)] and 3’ non-coding regions as minimal cis-elements required to assemble functional replicase complex. The experiments also indicated that the RIISL(+) and 3’ non coding regions could be physically separated on two different RNA molecules to assemble TBSV replicase, suggesting insights into viral evolution.
2

In-depth characterization of the NS3:NS5 interaction within the West Nile virus replicase complex during positive strand RNA synthesis / Caractérisation détaillée de l’interaction entre NS3 et NS5 dans le complexe de réplication du virus du Nil occidental pendant la synthèse d’ARN de polarité positive

Brand, Carolin January 2017 (has links)
Les Flavivirus transmis par les moustiques comme le virus du Nil occidental, le virus de la dengue, le virus de la fièvre jaune, le virus de l’encéphalite japonaise et le virus Zika constituent des préoccupations croissantes de santé publique. Ils se sont répandus dans le monde au cours des dernières décennies, et les épidémies sont devenues plus fréquentes et plus sévères. Chaque année, des millions de personnes sont infectées et environ 50 000 patients décèdent d’infections à Flavivirus. Malgré les nombreux efforts de recherche, il n’y a actuellement aucun médicament antiviral spécifique disponible, et des nouvelles stratégies antivirales sont indispensables. Comprendre comment les Flavivirus fonctionnent au niveau moléculaire aidera à découvrir des nouvelles cibles pour l'intervention thérapeutique. Les Flavivirus ont un génome d'ARN simple brin de polarité positive qui code pour trois protéines structurales et huit protéines non structurales. Seules deux des huit protéines non structurales ont des activités enzymatiques. NS3 possède un domaine protéase et un domaine hélicase, et NS5 a un domaine méthyl- et guanylyltransférase et un domaine ARN polymérase ARN-dépendante. Ensemble, ils répliquent le génome viral. Ici, nous caractérisons l'interaction entre NS3 et NS5 dans le complexe de réplication du virus du Nil occidental pendant la synthèse d’ARN de polarité positive. Un modèle d'interaction comprenant NS3, NS5 et l’ARN viral a été développé basé sur des structures cristallines connues ainsi que des activités enzymatiques des deux protéines individuelles, et ce modèle a été soumis à des simulations de dynamique moléculaire. Les interactions potentielles entre les protéines NS3 et NS5 ont été identifiées. Les résidus impliqués dans ces interactions ont été mutés dans un réplicon du virus du Nil occidental et les effets de ces mutations sur la réplication virale ont été évalués. Une région particulière à la surface de la protéine NS3 a été identifiée comme étant cruciale pour la réplication virale, très probablement parce qu'elle interagit avec NS5. Cette région pourrait être une cible attrayante pour la recherche de composés qui pourraient interférer avec l'interaction entre NS3 et NS5 et donc posséder un potentiel antiviral intéressant. / Abstract : Mosquito-borne Flaviviruses like West Nile virus, Dengue virus, Yellow Fever virus, Japanese encephalitis virus, and Zika virus are increasing public health concerns. They have spread globally during the past decades, and outbreaks have recently become more frequent and more severe. Every year, millions of people are infected, and approximately 50,000 patients die from Flavivirus infections. Despite extensive research efforts, there are currently no specific antiviral drugs available, and new antiviral strategies are greatly needed. Understanding how Flaviviruses work on a molecular level will help in uncovering new points for therapeutic intervention. Flaviviruses have a single-stranded RNA genome of positive polarity that encodes three structural and eight non-structural proteins. Only two of the eight non-structural proteins have enzymatic activities. NS3 has an N-terminal protease domain and a C-terminal helicase domain, and NS5 has an N-terminal capping enzyme domain and a C-terminal RNA-dependent RNA polymerase domain. Together, they replicate the viral genome. Here we characterize the NS3:NS5 interaction within the West Nile virus RNA replicase complex during positive strand synthesis. An interaction model including NS3, NS5 and viral RNA was developed based on the known crystal structures as well as enzymatic activities of the two individual proteins, and this model was subjected to molecular dynamics simulations. Potential interactions between the NS3 and NS5 proteins were identified. Residues involved in these interactions were mutated in a West Nile virus replicon, and the effects of these mutations on viral replication were evaluated. One particular region on the surface of the NS3 protein was identified to be crucial for viral replication, most likely because it mediates the interaction with NS5. This region might be an attractive target for the search of compounds that could interfere with the NS3:NS5 interaction and therefore possess an interesting antiviral potential.

Page generated in 0.0446 seconds