• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Funções de onda para o átomo de lítio no formalismo hiperesférico / Not available

D\'Incao, José Paulo 25 March 1997 (has links)
O problema quântico não relativístico de quatro corpos tem recebido nos últimos anos uma atenção muito especial. O desenvolvimento de técnicas matemáticas e computacionais tornou viável a obtenção de resultados para a equação de Schrödinger. Essa classe de problemas inclui o átomo de lítio, que é desenvolvido neste projeto sob o formalismo hiperesférico adiabático (HAA), por ser um sistema altamente correlacionado. O ground state e suas excitações tem spin total S = 1/2, portando a representação mista [21], do grupo de permutação S3. Nos usamos como base para as funções de canal os hiperesféricos harmônicos do grupo de rotação SO(9) onde nós impusemos a representação mista [21] do S3, através do uso dos operadores de projeção para esta simetria, de modo que a composição spin&#8855espacial seja uma representação totalmente anti-simétrica. As curvas de potencial são calculadas, nesta base, para uma configuração de momento angular (l1, l2, l3), e posteriormente adicionamos outras funções, na configuração (0,0,0), para melhorarmos a convergência da curva na região de R pequeno. Neste trabalho nos tratamos a equação hiperesférica radial dentro da aproximação adiabática extrema (EAA), sem as correções não adiabáticas P&#956&#957 (R) e Q&#956&#957 (R), obtendo um primeiro resultado para a energia do estado fundamental E(0)EAA, preparando procedimento para futuras melhoras na precisão e no calculo de um novo conjunto de funções de base / O problema quântico não relativístico de quatro corpos tem recebido nos últimos anos uma atenção muito especial. O desenvolvimento de técnicas matemáticas e computacionais tornou viável a obtenção de resultados para a equação de Schrödinger. Essa classe de problemas inclui o átomo de lítio, que é desenvolvido neste projeto sob o formalismo hiperesférico adiabático (HAA), por ser um sistema altamente correlacionado. O ground state e suas excitações tem spin total S = 1/2, portando a representação mista [21], do grupo de permutação S3. Nos usamos como base para as funções de canal os hiperesféricos harmônicos do grupo de rotação SO(9) onde nós impusemos a representação mista [21] do S3, através do uso dos operadores de projeção para esta simetria, de modo que a composição spin&#8855espacial seja uma representação totalmente anti-simétrica. As curvas de potencial são calculadas, nesta base, para uma configuração de momento angular (l1, l2, l3), e posteriormente adicionamos outras funções, na configuração (0,0,0), para melhorarmos a convergência da curva na região de R pequeno. Neste trabalho nos tratamos a equação hiperesférica radial dentro da aproximação adiabática extrema (EAA), sem as correções não adiabáticas P&#956&#957 (R) e Q&#956&#957 (R), obtendo um primeiro resultado para a energia do estado fundamental E(0)EAA, preparando procedimento para futuras melhoras na precisão e no calculo de um novo conjunto de funções de base
2

Funções de onda para o átomo de lítio no formalismo hiperesférico / Not available

José Paulo D\'Incao 25 March 1997 (has links)
O problema quântico não relativístico de quatro corpos tem recebido nos últimos anos uma atenção muito especial. O desenvolvimento de técnicas matemáticas e computacionais tornou viável a obtenção de resultados para a equação de Schrödinger. Essa classe de problemas inclui o átomo de lítio, que é desenvolvido neste projeto sob o formalismo hiperesférico adiabático (HAA), por ser um sistema altamente correlacionado. O ground state e suas excitações tem spin total S = 1/2, portando a representação mista [21], do grupo de permutação S3. Nos usamos como base para as funções de canal os hiperesféricos harmônicos do grupo de rotação SO(9) onde nós impusemos a representação mista [21] do S3, através do uso dos operadores de projeção para esta simetria, de modo que a composição spin&#8855espacial seja uma representação totalmente anti-simétrica. As curvas de potencial são calculadas, nesta base, para uma configuração de momento angular (l1, l2, l3), e posteriormente adicionamos outras funções, na configuração (0,0,0), para melhorarmos a convergência da curva na região de R pequeno. Neste trabalho nos tratamos a equação hiperesférica radial dentro da aproximação adiabática extrema (EAA), sem as correções não adiabáticas P&#956&#957 (R) e Q&#956&#957 (R), obtendo um primeiro resultado para a energia do estado fundamental E(0)EAA, preparando procedimento para futuras melhoras na precisão e no calculo de um novo conjunto de funções de base / O problema quântico não relativístico de quatro corpos tem recebido nos últimos anos uma atenção muito especial. O desenvolvimento de técnicas matemáticas e computacionais tornou viável a obtenção de resultados para a equação de Schrödinger. Essa classe de problemas inclui o átomo de lítio, que é desenvolvido neste projeto sob o formalismo hiperesférico adiabático (HAA), por ser um sistema altamente correlacionado. O ground state e suas excitações tem spin total S = 1/2, portando a representação mista [21], do grupo de permutação S3. Nos usamos como base para as funções de canal os hiperesféricos harmônicos do grupo de rotação SO(9) onde nós impusemos a representação mista [21] do S3, através do uso dos operadores de projeção para esta simetria, de modo que a composição spin&#8855espacial seja uma representação totalmente anti-simétrica. As curvas de potencial são calculadas, nesta base, para uma configuração de momento angular (l1, l2, l3), e posteriormente adicionamos outras funções, na configuração (0,0,0), para melhorarmos a convergência da curva na região de R pequeno. Neste trabalho nos tratamos a equação hiperesférica radial dentro da aproximação adiabática extrema (EAA), sem as correções não adiabáticas P&#956&#957 (R) e Q&#956&#957 (R), obtendo um primeiro resultado para a energia do estado fundamental E(0)EAA, preparando procedimento para futuras melhoras na precisão e no calculo de um novo conjunto de funções de base

Page generated in 0.0817 seconds