Spelling suggestions: "subject:"representações induzida."" "subject:"representações induzido.""
1 |
Representações irredutíveis unitárias do grupo de Poincaré / Irreducible unitary representations of the Poincaré Group.Germano, Guilherme Rocha 17 November 2016 (has links)
A teoria de representações de grupos topológicos Hausdorff, localmente compactos e separáveis em espaços de Hilbert separáveis é introduzida, especificada para grupos compactos e comutativos e são obtidas realizações explicitas das representações finitas irredutíveis de $SU(2)$, $SO(3)$, SL(2,C) e $SO(1,3)^{\\uparrow}$. A teoria das representações induzidas é então apresentada e, depois de feita a conexão entre teorias quântico relativísticas livres no espaço plano de Minkowski e representações unitárias irredutíveis de $R^4 times$ SL(2,C), aplicada para obter tais representações e realizar explicitamente os casos correspondentes a partículas elementares com spin definido em espaços que não admitem a definição de operadores de reflexão espacial. A inclusão da operação de reflexão espacial é feita através de uma variação do método das representações induzidas que conduz a representações unitárias {\\bf redutíveis} de $R^4 times$ SL(2,C) para as quais são obtidas equações de onda selecionando espaços irredutíveis, os quais definem partículas elementares admitindo paridade no contexto das teorias quânticas de campos livres. / The theory of locally compact, second countable and Hausdorff topological group representations in separable Hilbert spaces is introduced, and specified to compact and commutative groups. Explicit realizations of the finite irreducible representations of $SU(2)$, $SO(3)$, SL(2,C) and $SO(1,3)^{\\uparrow}$ are obtained. The theory of induced representations is then presented and, after the connection between quantum relativistic free theories in flat Minkowski space and unitary irreducible representations of $R^4 times$ SL(2,C) is made, it is applied and used to classify these representations. Explicit realizations of the cases corresponding to elementary particles with definite spin in spaces which do not allow spacial reflection operators are presented. Spacial reflections are carried with a variation of the induced representation method that leads to unitary {\\bf reducible} representations of $R^4 times$ SL(2,C). Wave equations selecting irreducible spaces that define elementary particles admitting parity in quantum free field theories are derived.
|
2 |
Representações irredutíveis unitárias do grupo de Poincaré / Irreducible unitary representations of the Poincaré Group.Guilherme Rocha Germano 17 November 2016 (has links)
A teoria de representações de grupos topológicos Hausdorff, localmente compactos e separáveis em espaços de Hilbert separáveis é introduzida, especificada para grupos compactos e comutativos e são obtidas realizações explicitas das representações finitas irredutíveis de $SU(2)$, $SO(3)$, SL(2,C) e $SO(1,3)^{\\uparrow}$. A teoria das representações induzidas é então apresentada e, depois de feita a conexão entre teorias quântico relativísticas livres no espaço plano de Minkowski e representações unitárias irredutíveis de $R^4 times$ SL(2,C), aplicada para obter tais representações e realizar explicitamente os casos correspondentes a partículas elementares com spin definido em espaços que não admitem a definição de operadores de reflexão espacial. A inclusão da operação de reflexão espacial é feita através de uma variação do método das representações induzidas que conduz a representações unitárias {\\bf redutíveis} de $R^4 times$ SL(2,C) para as quais são obtidas equações de onda selecionando espaços irredutíveis, os quais definem partículas elementares admitindo paridade no contexto das teorias quânticas de campos livres. / The theory of locally compact, second countable and Hausdorff topological group representations in separable Hilbert spaces is introduced, and specified to compact and commutative groups. Explicit realizations of the finite irreducible representations of $SU(2)$, $SO(3)$, SL(2,C) and $SO(1,3)^{\\uparrow}$ are obtained. The theory of induced representations is then presented and, after the connection between quantum relativistic free theories in flat Minkowski space and unitary irreducible representations of $R^4 times$ SL(2,C) is made, it is applied and used to classify these representations. Explicit realizations of the cases corresponding to elementary particles with definite spin in spaces which do not allow spacial reflection operators are presented. Spacial reflections are carried with a variation of the induced representation method that leads to unitary {\\bf reducible} representations of $R^4 times$ SL(2,C). Wave equations selecting irreducible spaces that define elementary particles admitting parity in quantum free field theories are derived.
|
Page generated in 0.0597 seconds