• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 8
  • 7
  • 2
  • 2
  • Tagged with
  • 44
  • 44
  • 40
  • 21
  • 20
  • 12
  • 11
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Reduced-set models for improving the training and execution speed of kernel methods

Kingravi, Hassan 22 May 2014 (has links)
This thesis aims to contribute to the area of kernel methods, which are a class of machine learning methods known for their wide applicability and state-of-the-art performance, but which suffer from high training and evaluation complexity. The work in this thesis utilizes the notion of reduced-set models to alleviate the training and testing complexities of these methods in a unified manner. In the first part of the thesis, we use recent results in kernel smoothing and integral-operator learning to design a generic strategy to speed up various kernel methods. In Chapter 3, we present a method to speed up kernel PCA (KPCA), which is one of the fundamental kernel methods for manifold learning, by using reduced-set density estimates (RSDE) of the data. The proposed method induces an integral operator that is an approximation of the ideal integral operator associated to KPCA. It is shown that the error between the ideal and approximate integral operators is related to the error between the ideal and approximate kernel density estimates of the data. In Chapter 4, we derive similar approximation algorithms for Gaussian process regression, diffusion maps, and kernel embeddings of conditional distributions. In the second part of the thesis, we use reduced-set models for kernel methods to tackle online learning in model-reference adaptive control (MRAC). In Chapter 5, we relate the properties of the feature spaces induced by Mercer kernels to make a connection between persistency-of-excitation and the budgeted placement of kernels to minimize tracking and modeling error. In Chapter 6, we use a Gaussian process (GP) formulation of the modeling error to accommodate a larger class of errors, and design a reduced-set algorithm to learn a GP model of the modeling error. Proofs of stability for all the algorithms are presented, and simulation results on a challenging control problem validate the methods.
22

Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operators

Martin, Robert January 2008 (has links)
Sampling theory is an active field of research that spans a variety of disciplines from communication engineering to pure mathematics. Sampling theory provides the crucial connection between continuous and discrete representations of information that enables one store continuous signals as discrete, digital data with minimal error. It is this connection that allows communication engineers to realize many of our modern digital technologies including cell phones and compact disc players. This thesis focuses on certain non-Fourier generalizations of sampling theory and their applications. In particular, non-Fourier analogues of bandlimited functions and extensions of sampling theory to functions on curved manifolds are studied. New results in bandlimited function theory, sampling theory on curved manifolds, and the theory of self-adjoint extensions of symmetric operators are presented. Besides being of mathematical interest in itself, the research contained in this thesis has applications to quantum physics on curved space and could potentially lead to more efficient information storage methods in communication engineering.
23

Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operators

Martin, Robert January 2008 (has links)
Sampling theory is an active field of research that spans a variety of disciplines from communication engineering to pure mathematics. Sampling theory provides the crucial connection between continuous and discrete representations of information that enables one store continuous signals as discrete, digital data with minimal error. It is this connection that allows communication engineers to realize many of our modern digital technologies including cell phones and compact disc players. This thesis focuses on certain non-Fourier generalizations of sampling theory and their applications. In particular, non-Fourier analogues of bandlimited functions and extensions of sampling theory to functions on curved manifolds are studied. New results in bandlimited function theory, sampling theory on curved manifolds, and the theory of self-adjoint extensions of symmetric operators are presented. Besides being of mathematical interest in itself, the research contained in this thesis has applications to quantum physics on curved space and could potentially lead to more efficient information storage methods in communication engineering.
24

Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions

Wang, Roy Chih Chung January 2017 (has links)
The representer theorem from the reproducing kernel Hilbert space theory is the origin of many kernel-based machine learning and signal modelling techniques that are popular today. Most kernel functions used in practical applications behave in a homogeneous manner across the domain of the signal of interest, and they are called stationary kernels. One open problem in the literature is the specification of a non-stationary kernel that is computationally tractable. Some recent works solve large-scale optimization problems to obtain such kernels, and they often suffer from non-identifiability issues in their optimization problem formulation. Many practical problems can benefit from using application-specific prior knowledge on the signal of interest. For example, if one can adequately encode the prior assumption that edge contours are smooth, one does not need to learn a finite-dimensional dictionary from a database of sampled image patches that each contains a circular object in order to up-convert images that contain circular edges. In the first portion of this thesis, we present a novel method for constructing non-stationary kernels that incorporates prior knowledge. A theorem is presented that ensures the result of this construction yields a symmetric and positive-definite kernel function. This construction does not require one to solve any non-identifiable optimization problems. It does require one to manually design some portions of the kernel while deferring the specification of the remaining portions to when an observation of the signal is available. In this sense, the resultant kernel is adaptive to the data observed. We give two examples of this construction technique via the grayscale image up-conversion task where we chose to incorporate the prior assumption that edge contours are smooth. Both examples use a novel local analysis algorithm that summarizes the p-most dominant directions for a given grayscale image patch. The non-stationary properties of these two types of kernels are empirically demonstrated on the Kodak image database that is popular within the image processing research community. Tensors and tensor decomposition methods are gaining popularity in the signal processing and machine learning literature, and most of the recently proposed tensor decomposition methods are based on the tensor power and alternating least-squares algorithms, which were both originally devised over a decade ago. The algebraic approach for the canonical polyadic (CP) symmetric tensor decomposition problem is an exception. This approach exploits the bijective relationship between symmetric tensors and homogeneous polynomials. The solution of a CP symmetric tensor decomposition problem is a set of p rank-one tensors, where p is fixed. In this thesis, we refer to such a set of tensors as a rank-one decomposition with cardinality p. Existing works show that the CP symmetric tensor decomposition problem is non-unique in the general case, so there is no bijective mapping between a rank-one decomposition and a symmetric tensor. However, a proposition in this thesis shows that a particular space of rank-one decompositions, SE, is isomorphic to a space of moment matrices that are called quasi-Hankel matrices in the literature. Optimization over Riemannian manifolds is an area of optimization literature that is also gaining popularity within the signal processing and machine learning community. Under some settings, one can formulate optimization problems over differentiable manifolds where each point is an equivalence class. Such manifolds are called quotient manifolds. This type of formulation can reduce or eliminate some of the sources of non-identifiability issues for certain optimization problems. An example is the learning of a basis for a subspace by formulating the solution space as a type of quotient manifold called the Grassmann manifold, while the conventional formulation is to optimize over a space of full column rank matrices. The second portion of this thesis is about the development of a general-purpose numerical optimization framework over SE. A general-purpose numerical optimizer can solve different approximations or regularized versions of the CP decomposition problem, and they can be applied to tensor-related applications that do not use a tensor decomposition formulation. The proposed optimizer uses many concepts from the Riemannian optimization literature. We present a novel formulation of SE as an embedded differentiable submanifold of the space of real-valued matrices with full column rank, and as a quotient manifold. Riemannian manifold structures and tangent space projectors are derived as well. The CP symmetric tensor decomposition problem is used to empirically demonstrate that the proposed scheme is indeed a numerical optimization framework over SE. Future investigations will concentrate on extending the proposed optimization framework to handle decompositions that correspond to non-symmetric tensors.
25

Operadores integrais positivos e espaços de Hilbert de reprodução / Positive integral operators and reproducing kernel Hilbert spaces

Ferreira, José Claudinei 27 July 2010 (has links)
Este trabalho é dedicado ao estudo de propriedades teóricas dos operadores integrais positivos em \'L POT. 2\' (X; u), quando X é um espaço topológico localmente compacto ou primeiro enumerável e u é uma medida estritamente positiva. Damos ênfase à análise de propriedades espectrais relacionadas com extensões do Teorema de Mercer e ao estudo dos espaços de Hilbert de reprodução relacionados. Como aplicação, estudamos o decaimento dos autovalores destes operadores, em um contexto especial. Finalizamos o trabalho com a análise de propriedades de suavidade das funções do espaço de Hilbert de reprodução, quando X é um subconjunto do espaço euclidiano usual e u é a medida de Lebesgue usual de X / In this work we study theoretical properties of positive integral operators on \'L POT. 2\'(X; u), in the case when X is a topological space, either locally compact or first countable, and u is a strictly positive measure. The analysis is directed to spectral properties of the operator which are related to some extensions of Mercer\'s Theorem and to the study of the reproducing kernel Hilbert spaces involved. As applications, we deduce decay rates for the eigenvalues of the operators in a special but relevant case. We also consider smoothness properties for functions in the reproducing kernel Hilbert spaces when X is a subset of the Euclidean space and u is the Lebesgue measure of the space
26

Universalidade e ortogonalidade em espaços de Hilbert de reprodução / Universality and orthogonality in reproducing Kernel Hilbert spaces

Barbosa, Victor Simões 19 February 2013 (has links)
Neste trabalho analisamos o papel das funções layout de um núcleo positivo definido K sobre um espaço topológico de Hausdor E com relação a duas propriedades específicas: a universalidade de K e a ortogonalidade no espaço de Hilbert de reprodução de K a partir de suportes disjuntos. As funções layout sempre existem mas podem não ser únicas. De uma maneira geral, a função layout e uma aplicação que transfere, convenientemente, informações do espaço E para um espaço com produto interno de dimensão alta, onde métodos lineares podem ser usados. Tanto a universalidade quanto a ortogonalidade pressupõem a continuidade do núcleo. O primeiro conceito exige que para cada compacto não vazio X de E, o conjunto de \"seções\" {K(., y) : y \'PERTENCE\' X} seja total no espaço de todas as funções contínuas com domínio X, munido da topologia da convergência uniforme. Um dos resultados principais do trabalho caracteriza a universalidade de um núcleo K através de uma propriedade de universalidade semelhante da função layout. A ortogonalidade a partir de suportes disjuntos almeja então a ortogonalidade de quaisquer duas funções do espaço de Hilbert de reprodução de K quando seus suportes não se intersectam / We analyze the role of feature maps of a positive denite kernel K acting on a Hausdorff topological space E in two specific properties: the universality of K and the orthogonality in the reproducing kernel Hilbert space of K from disjoint supports. Feature maps always exist but may not be unique. A feature map may be interpreted as a kernel based procedure that maps the data from the original input space E into a potentially higher dimensional \"feature space\" in which linear methods may then be used. Both properties, universality and orthogonality from disjoint supports, make sense under continuity of the kernel. Universality of K is equivalent to the fundamentality of {K(. ; y) : y \'IT BELONGS\' X} in the space of all continuous functions on X, with the topology of uniform convergence, for all nonempty compact subsets X of E. One of the main results in this work is a characterization of the universality of K from a similar concept for the feature map. Orthogonality from disjoint supports seeks the orthogonality of any two functions in the reproducing kernel Hilbert space of K when the functions have disjoint supports
27

A NEW INDEPENDENCE MEASURE AND ITS APPLICATIONS IN HIGH DIMENSIONAL DATA ANALYSIS

Ke, Chenlu 01 January 2019 (has links)
This dissertation has three consecutive topics. First, we propose a novel class of independence measures for testing independence between two random vectors based on the discrepancy between the conditional and the marginal characteristic functions. If one of the variables is categorical, our asymmetric index extends the typical ANOVA to a kernel ANOVA that can test a more general hypothesis of equal distributions among groups. The index is also applicable when both variables are continuous. Second, we develop a sufficient variable selection procedure based on the new measure in a large p small n setting. Our approach incorporates marginal information between each predictor and the response as well as joint information among predictors. As a result, our method is more capable of selecting all truly active variables than marginal selection methods. Furthermore, our procedure can handle both continuous and discrete responses with mixed-type predictors. We establish the sure screening property of the proposed approach under mild conditions. Third, we focus on a model-free sufficient dimension reduction approach using the new measure. Our method does not require strong assumptions on predictors and responses. An algorithm is developed to find dimension reduction directions using sequential quadratic programming. We illustrate the advantages of our new measure and its two applications in high dimensional data analysis by numerical studies across a variety of settings.
28

Application Of Polynomial Reproducing Schemes To Nonlinear Mechanics

Rajathachal, Karthik M 01 1900 (has links)
The application of polynomial reproducing methods has been explored in the context of linear and non linear problems. Of specific interest is the application of a recently developed reproducing scheme, referred to as the error reproducing kernel method (ERKM), which uses non-uniform rational B-splines (NURBS) to construct the basis functions, an aspect that potentially helps bring in locall support, convex approximation and variation diminishing properties in the functional approximation. Polynomial reproducing methods have been applied to solve problems coming under the class of a simplified theory called Cosserat theory. Structures such as a rod which have special geometric properties can be modeled with the aid of such simplified theories. It has been observed that the application of mesh-free methods to solve the aforementioned problems has the advantage that large deformations and exact cross-sectional deformations in a rod could be captured exactly by modeling the rod just in one dimension without the problem of distortion of elements or element locking which would have had some effect if the problem were to be solved using mesh based methods. Polynomial reproducing methods have been applied to problems in fracture mechanics to study the propagation of crack in a structure. As it is often desirable to limit the use of the polynomial reproducing methods to some parts of the domain where their unique advantages such as fast convergence, good accuracy, smooth derivatives, and trivial adaptivity are beneficial, a coupling procedure has been adopted with the objective of using the advantages of both FEM and polynomial reproducing methods. Exploration of SMW (Sherman-Morrison-Woodbury) in the context of polynomial reproducing methods has been done which would assist in calculating the inverse of a perturbed matrix (stiffness matrix in our case). This would to a great extent reduce the cost of computation. In this thesis, as a first step attempts have been made to apply Mesh free cosserat theory to one dimensional problems. The idea was to bring out the advantages and limitations of mesh free cosserat theory and then extend it to 2D problems.
29

Operadores integrais positivos e espaços de Hilbert de reprodução / Positive integral operators and reproducing kernel Hilbert spaces

José Claudinei Ferreira 27 July 2010 (has links)
Este trabalho é dedicado ao estudo de propriedades teóricas dos operadores integrais positivos em \'L POT. 2\' (X; u), quando X é um espaço topológico localmente compacto ou primeiro enumerável e u é uma medida estritamente positiva. Damos ênfase à análise de propriedades espectrais relacionadas com extensões do Teorema de Mercer e ao estudo dos espaços de Hilbert de reprodução relacionados. Como aplicação, estudamos o decaimento dos autovalores destes operadores, em um contexto especial. Finalizamos o trabalho com a análise de propriedades de suavidade das funções do espaço de Hilbert de reprodução, quando X é um subconjunto do espaço euclidiano usual e u é a medida de Lebesgue usual de X / In this work we study theoretical properties of positive integral operators on \'L POT. 2\'(X; u), in the case when X is a topological space, either locally compact or first countable, and u is a strictly positive measure. The analysis is directed to spectral properties of the operator which are related to some extensions of Mercer\'s Theorem and to the study of the reproducing kernel Hilbert spaces involved. As applications, we deduce decay rates for the eigenvalues of the operators in a special but relevant case. We also consider smoothness properties for functions in the reproducing kernel Hilbert spaces when X is a subset of the Euclidean space and u is the Lebesgue measure of the space
30

Universalidade e ortogonalidade em espaços de Hilbert de reprodução / Universality and orthogonality in reproducing Kernel Hilbert spaces

Victor Simões Barbosa 19 February 2013 (has links)
Neste trabalho analisamos o papel das funções layout de um núcleo positivo definido K sobre um espaço topológico de Hausdor E com relação a duas propriedades específicas: a universalidade de K e a ortogonalidade no espaço de Hilbert de reprodução de K a partir de suportes disjuntos. As funções layout sempre existem mas podem não ser únicas. De uma maneira geral, a função layout e uma aplicação que transfere, convenientemente, informações do espaço E para um espaço com produto interno de dimensão alta, onde métodos lineares podem ser usados. Tanto a universalidade quanto a ortogonalidade pressupõem a continuidade do núcleo. O primeiro conceito exige que para cada compacto não vazio X de E, o conjunto de \"seções\" {K(., y) : y \'PERTENCE\' X} seja total no espaço de todas as funções contínuas com domínio X, munido da topologia da convergência uniforme. Um dos resultados principais do trabalho caracteriza a universalidade de um núcleo K através de uma propriedade de universalidade semelhante da função layout. A ortogonalidade a partir de suportes disjuntos almeja então a ortogonalidade de quaisquer duas funções do espaço de Hilbert de reprodução de K quando seus suportes não se intersectam / We analyze the role of feature maps of a positive denite kernel K acting on a Hausdorff topological space E in two specific properties: the universality of K and the orthogonality in the reproducing kernel Hilbert space of K from disjoint supports. Feature maps always exist but may not be unique. A feature map may be interpreted as a kernel based procedure that maps the data from the original input space E into a potentially higher dimensional \"feature space\" in which linear methods may then be used. Both properties, universality and orthogonality from disjoint supports, make sense under continuity of the kernel. Universality of K is equivalent to the fundamentality of {K(. ; y) : y \'IT BELONGS\' X} in the space of all continuous functions on X, with the topology of uniform convergence, for all nonempty compact subsets X of E. One of the main results in this work is a characterization of the universality of K from a similar concept for the feature map. Orthogonality from disjoint supports seeks the orthogonality of any two functions in the reproducing kernel Hilbert space of K when the functions have disjoint supports

Page generated in 0.0813 seconds