• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Situational Awareness in Aviation: Robust Vision-Based Detection of Hazardous Objects

Levin, Alexandra, Vidimlic, Najda January 2020 (has links)
Enhanced vision and object detection could be useful in the aviation domain in situations of bad weather or cluttered environments. In particular, enhanced vision and object detection could improve situational awareness and aid the pilot in environment interpretation and detection of hazardous objects. The fundamental concept of object detection is to interpret what objects are present in an image with the aid of a prediction model or other feature extraction techniques. Constructing a comprehensive data set that can describe the operational environment and be robust for weather and lighting conditions is vital if the object detector is to be utilised in the avionics domain. Evaluating the accuracy and robustness of the constructed data set is crucial. Since erroneous detection, referring to the object detection algorithm failing to detect a potentially hazardous object or falsely detecting an object, is a major safety issue. Bayesian uncertainty estimations are evaluated to examine if they can be utilised to detect miss-classifications, enabling the use of a Bayesian Neural Network with the object detector to identify an erroneous detection. The object detector Faster RCNN with ResNet-50-FPN was utilised using the development framework Detectron2; the accuracy of the object detection algorithm was evaluated based on obtained MS-COCO metrics. The setup achieved a 50.327 % AP@[IoU=.5:.95] score. With an 18.1 % decrease when exposed to weather and lighting conditions. By inducing artificial artefacts and augmentations of luminance, motion, and weather to the images of the training set, the AP@[IoU=.5:.95] score increased by 15.6 %. The inducement improved the robustness necessary to maintain the accuracy when exposed to variations of environmental conditions, which resulted in just a 2.6 % decrease from the initial accuracy. To fully conclude that the augmentations provide the necessary robustness for variations in environmental conditions, the model needs to be subjected to actual image representations of the operational environment with different weather and lighting phenomena. Bayesian uncertainty estimations show great promise in providing additional information to interpret objects in the operational environment correctly. Further research is needed to conclude if uncertainty estimations can provide necessary information to detect erroneous predictions.

Page generated in 0.0181 seconds