• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Drawdown and river bank stability

Green, Samuel John Unknown Date (has links) (PDF)
Drawdown is the lowering of the water level, and can refer to the groundwater, or the level of a river. In this thesis it will generally refer to a river going from a high flow condition to a lower flow condition. The rate of drawdown is expressed as either the change in flow per unit time, or the change in stage per unit time. The later is of most importance in terms of bank stability. (For complete abstract open document)
2

Planar and axisymmetric bottom withdrawal from a density-stratified reservoir

Ho, Juay C. January 1973 (has links)
Thesis (Ph. D.)--University of Wisconsin, 1973. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 185-190).
3

The use of inverse methods in the study of reservoir dynamics and water quality /

Anohin, Vadim V. January 2006 (has links)
Thesis (Ph.D.)--University of Western Australia, 2006.
4

Re-assembling Hetch Hetchy : water supply implications of removing O'Shaughnessy Dam /

Null, Sarah. January 2003 (has links) (PDF)
Reformatted version of the author's thesis (M.A.)--University of California, Davis, 2003. / Includes bibliographical references (leaves 40-44). Also available in PDF via the Internet.
5

MODRSP: a program to calculate drawdown, velocity, storage and capture response functions for multi-aquifer systems

Maddock, Thomas, III, Lacher, Laurel J. January 1991 (has links)
MODRSP is program used for calculating drawdown, velocity, storage losses and capture response functions for multi - aquifer ground -water flow systems. Capture is defined as the sum of the increase in aquifer recharge and decrease in aquifer discharge as a result of an applied stress from pumping [Bredehoeft et al., 19821. The capture phenomena treated by MODRSP are stream- aquifer leakance, reduction of evapotranspiration losses, leakance from adjacent aquifers, flows to and from prescribed head boundaries and increases or decreases in natural recharge or discharge from head dependent boundaries. The response functions are independent of the magnitude of the stresses and are dependent on the type of partial differential equation, the boundary and initial conditions and the parameters thereof, and the spatial and temporal location of stresses. The aquifers modeled may have irregular -shaped areal boundaries and non -homogeneous transmissive and storage qualities. For regional aquifers, the stresses are generally pumpages from wells. The utility of response functions arises from their capacity to be embedded in management models. The management models consist of a mathematical expression of a criterion to measure preference, and sets of constraints which act to limit the preferred actions. The response functions are incorporated into constraints that couple the hydrologic system with the management system (Maddock, 1972). MODRSP is a modification of MODFLOW (McDonald and Harbaugh, 1984,1988). MODRSP uses many of the data input structures of MODFLOW, but there are major differences between the two programs. The differences are discussed in Chapters 4 and 5. An abbreviated theoretical development is presented in Chapter 2, a more complete theoretical development may be found in Maddock and Lacher (1991). The finite difference technique discussion presented in Chapter 3 is a synopsis of that covered more completely in McDonald and Harbaugh (1988). Subprogram organization is presented in Chapter 4 with the data requirements explained in Chapter 5. Chapter 6 contains three example applications of MODRSP.
6

Prediction of daily net inflows for management of reservoir systems

Xie, Ming, 1973- January 2001 (has links)
Operational planning of water resource systems like reservoirs and hydropower plants calls for real-time forecasting of reservoir inflow. Reservoir daily inflow forecasts provide a warning of impending floods or drought conditions and help to optimize operating policies for reservoir management based on a fine time scale. The aim of this study was to determine the best model for daily reservoir inflow prediction through linear regression, exponential smoothing and artificial neural network (ANN) techniques. The Hedi reservoir, the third largest reservoir in south China with a 1.144 x 109 m 3, was selected as the study site. The performance of these forecasting models, in terms of forecasting accuracy, efficiency of model development and adaptability for future prediction, were compared to one another. All models performed well during the dry season (inflow with low variability), while the non-linear ANNs were superior to other models in frontal rainy season and typhoon season (inflow with high variability). The performance of ANN models were hardly affected by the high degree of uncertainty and variability inherent to the rainy season. Stepwise selection was very helpful in identifying significant variables for regression models and ANNs. This procedure reduced ANN's size and greatly improved forecasting accuracy for ANN models. The impact of training data series, model architecture and network internal parameters on ANNs performances were also addressed in this study. The overall evaluation indicates that ANNs are an effective and robust tool for input-output mapping under more extreme and variable conditions. ANNs provide an alternative forecasting approach to conventional time series forecasting models for daily reservoir inflow prediction.
7

Prediction of daily net inflows for management of reservoir systems

Xie, Ming, 1973- January 2001 (has links)
No description available.
8

The use of inverse methods in the study of reservoir dynamics and water quality

Anohin, Vadim V January 2006 (has links)
[Truncated abstract] The process of selective withdrawal has, over many years, been used as an effective tool for extraction of water of particular quality from stratifed reservoirs. While the formation and steady-state theory of selective withdrawal in a stratifed fluid at rest has been extensively studied, little is known how vertical displacements of stratifcation due to long internal waves affect the water quality of the outflows. The first part of this study investigates the effect of basin-scale internal waves on the water quality parameters in Lake Burragorang, a large water supply reservoir for the city of Sydney, Australia. It is shown from field observations how the steady-state formulation of selective withdrawal can be used to predict the outflow water quality in reservoirs where internal waves are present, with a temperature prediction accuracy within 0.2 oC. . . In order to explain fluctuations in water quality parameters of the outflows, such as turbidity, it is important to know not only the stratifcation conditions in front to the offtake, but also to understand the dynamics of suspended particles in the upper reaches of the reservoir. In the third part of this study, transport and settling of suspended particles was investigated in the Wollondilly arm of Lake Burragorang by combination of direct and inverse methods. The inverse method was modifed to enable the separation of advective and diffusive transport of suspended particles from Stokes settling controlled by gravity, yielding twodimensional fields of particle velocities and settling fluxes in the upper reaches of the reservoir. These estimates are compared to the direct measurements of sedimentation fluxes made by the sediment traps and LISST-100.

Page generated in 0.0619 seconds