Spelling suggestions: "subject:"resolução dde entidades"" "subject:"resolução dde cantidades""
1 |
Um estudo comparativo entre abordagens supervisionadas para a resolução de referências a autores / A comparative study of supervised approaches for author reference resolutionCANUTO, Sérgio Daniel Carvalho 25 August 2011 (has links)
Made available in DSpace on 2014-07-29T14:57:49Z (GMT). No. of bitstreams: 1
Dissertacao Sergio Daniel Carvalho Canuto.pdf: 584503 bytes, checksum: 6a393853a561ed8fec4bd9e4eef56628 (MD5)
Previous issue date: 2011-08-25 / In this work we investigate two classes of solutions for the problem of author name disambiguation.We refer to the approach of the first class as relational based on attributes
(RBA) solutions. These approaches use similarity measures based on attributes of the two references being compared or based on the attributes of other references connected to them by authorship. The other class of approaches uses information on semantic relationships among entities in addition to attribute based similarity measures to decide
if two references refer to the same author. We refer to the approaches of this class as relational based on entities (RBE) solutions. We present a supervised version of the RBE
based on the work introduced by Bhattacharya and Gettor [7]. In the experiments we conducted our RBE solution presented statistically significant gains in efficacy over all
the other methods studied. However, the gains are only marginal over the RBA methods experimented. On the other hand, the execution time of both training and testing phases of the RBE methods are notably greater than those of the RBA methods. As far as we know there is no other similar study reported in literature and we consider the results reported
here are relevant because they inspire research about enhancing RBA solutions. / Neste trabalho investigamos duas classes de soluções supervisionadas para o problema de resolver se duas ou mais referências a autores (nomes de autores) correspondem à
mesma pessoa. Denominamos abordagens relacionais baseadas em atributo (RBA) as abordagens da primeira classe. Nessas abordagens são utilizadas medidas de similaridades
entre atributos textuais de duas referências ou de referências ligadas a elas por coautoria. A outra classe de soluções estudada utiliza informações de relacionamento semântico
entre entidades, em adição às similaridades por atributos, para decidir quando duas ou mais referências devem ser consideradas correferentes. Denominamos as abordagens
dessa classe de relacionais baseadas em entidades (RBE). Apresentamos uma versão supervisionada de solução RBE que se baseia na proposta apresentada por Bhattacharya e
Gettor [7]. Experimentos utilizando duas coleções reais e uma coleção artificial mostram que a solução RBE proposta neste trabalho apresenta ganhos de eficácia estatisticamente
comprovados em relação a todos os métodos analisados. Entretanto, o ganho é apenas marginal em relação aos métodos da classe RBA analisados. Por outro lado, o custo
computacional tanto de treino quanto de teste das abordagens RBE é consideravelmente maior que o custo dos métodos RBA. Consideramos que esse estudo comparativo é inédito e que as conclusões são importantes, pois incentivam pesquisas para o aprimoramento das soluções RBA.
|
2 |
Uma estratégia para seleção de atributos relevantes no processo de resolução de entidadesCANALLE, Gabrielle Karine 22 August 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-03-02T12:07:34Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertacao_versao_final.pdf: 2318178 bytes, checksum: 1c672f9c2706d51a970a72df59fdb7a1 (MD5) / Made available in DSpace on 2017-03-02T12:07:34Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Dissertacao_versao_final.pdf: 2318178 bytes, checksum: 1c672f9c2706d51a970a72df59fdb7a1 (MD5)
Previous issue date: 2016-08-22 / Integração de Dados é um processo essencial quando deseja-se obter uma visão unificada de dados armazenados em fontes de dados autônomas, heterogêneas e distribuídas. Uma etapa crucial desse processo é a Resolução de Entidades, que consiste em identificar instâncias que se referem à mesma entidade do mundo real. A Resolução de Entidades se subdivide em várias fases, incluindo uma fase de comparação entre pares de instâncias. Nesta fase, são utilizadas funções que avaliam a similaridade entre os valores dos atributos que descrevem as instâncias. É importante notar que a qualidade do resultado do processo de Resolução de Entidades é diretamente afetada pelo conjunto de atributos selecionados para a fase de comparação de instâncias. Contudo, selecionar tais atributos pode ser um grande desafio, devido ao grande número de atributos que descrevem as instâncias ou à baixa relevância de alguns atributos para o processo de Resolução de Entidades. Na literatura existem alguns trabalhos que abordam esse problema. Em sua maioria, as abordagens propostas para seleção de atributos utilizam aprendizagem de máquina. No entanto, além da necessidade de um conjunto de treinamento, cuja definição é uma tarefa difícil, principalmente em cenários de grandes volumes de dados, a aprendizagem de máquina é um processo custoso. Neste contexto, este trabalho propõe uma estratégia para seleção de atributos relevantes a serem considerados na fase de comparação de instâncias do processo de Resolução de Entidades. A estratégia proposta considera critérios relacionados aos dados, tais como a densidade e repetição de valores de cada atributo, e critérios relacionados às fontes, tal como a confiabilidade, para avaliar a relevância de um atributo para a fase de comparação de instâncias. Um atributo é considerado relevante se contribui positivamente para a identificação de correspondências verdadeiras, e irrelevante se contribui na identificação de correspondências erradas (falsos positivos e falsos negativos). Em experimentos realizados, utilizando a estratégia proposta, foi possível alcançar bons resultados na comparação de instâncias do processo de Resolução de Entidades, ou seja, os atributos dados como relevantes foram aqueles que contribuíram para encontrar o maior número de correspondências verdadeiras, com o menor número de correspondências erradas. / Data integration is an essential task for achieving a unified view of data stored in autonomous, heterogeneous and distributed sources. A key step in this process is Entity Resolution, which consists of identifying instances that refer to the same real-world entity. Entity Resolution can be subdivided into several stages, including a comparison step between instance pairs. In this step, functions that check the similarity between values of attributes are used to discover equivalent instances. It is important to note that the quality of the result of the entity resolution process is directly affected by the set of selected attributes used to compare the instances. However, selecting such attributes can be challenging, due to either the large number of attributes that describes an instance or to the low relevance of some attributes regarding to the entity resolution process. In the literature, there are some approaches that investigated this problem. Most of them employ machine learning techniques for selecting relevant attributes. Usually, these techniques are computationally costly and also have the necessity of defining a training set, which requirements are non-trivial, mainly in large volumes of data scenarios. In this context, this work proposes a strategy for selecting relevant attributes to be considered in the instance comparison phase of the process of Entity Resolution. The proposed strategy considers criteria related to data, such as density and repetition of values of each attribute, and related to sources, such as reliability, to evaluate the relevance of the attributes. An attribute is considered relevant if contributes positively for the identification of true matches, and irrelevant if contributes for the identification of incorrect matches (false positives and false negatives). In our experiments, the proposed strategy achieved good results for the Entity Resolution process. That is, the attributes classified as relevant were the ones that contributed to find the greatest number of true matches with a few incorrect matches.
|
3 |
Pareamento privado de atributos no contexto da resolução de entidades com preservação de privacidade.NÓBREGA, Thiago Pereira da. 10 September 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-09-10T19:58:50Z
No. of bitstreams: 1
THIAGO PEREIRA DA NÓBREGA – DISSERTAÇÃO (PPGCC) 2018.pdf: 3402601 bytes, checksum: b1a8d86821a4d14435d5adbdd850ec04 (MD5) / Made available in DSpace on 2018-09-10T19:58:50Z (GMT). No. of bitstreams: 1
THIAGO PEREIRA DA NÓBREGA – DISSERTAÇÃO (PPGCC) 2018.pdf: 3402601 bytes, checksum: b1a8d86821a4d14435d5adbdd850ec04 (MD5)
Previous issue date: 2018-05-11 / A Resolução de entidades com preservação de privacidade (REPP) consiste em identificar entidades (e.g. Pacientes), armazenadas em bases de dados distintas, que correspondam a um mesmo objeto do mundo real. Como as entidades em questão possuem dados privados (ou seja, dados que não podem ser divulgados) é fundamental que a tarefa de REPP seja executada sem que nenhuma informação das entidades seja revelada entre os participantes (proprietários das bases de dados), de modo que a privacidade dos dados seja preservada. Ao final da tarefa de REPP, cada participante identifica quais entidades de sua base de dados estão presentes nas bases de dados dos demais participantes. Antes de iniciar a tarefa de REPP os participantes devem concordar em relação à entidade (em comum), a ser considerada na tarefa, e aos atributos das entidades a serem utilizados para comparar as entidades. Em geral, isso exige que os participantes tenham que expor os esquemas de suas bases de dados, compartilhando (meta-) informações que podem ser utilizadas para quebrar a privacidade dos dados. Este trabalho propõe uma abordagem semiautomática para identificação de atributos similares (pareamento de atributos) a serem utilizados para comparar entidades durante a REPP. A abordagem é inserida em uma etapa preliminar da REPP (etapa de Apresentação) e seu resultado (atributos similares) pode ser utilizado pelas
etapas subsequentes (Blocagem e Comparação). Na abordagem proposta a identificação dos atributos similares é realizada utilizando-se representações dos atributos (Assinaturas de Dados), geradas por cada participante, eliminando a necessidade de divulgar informações sobre seus esquemas, ou seja, melhorando a segurança e privacidade da tarefa de REPP. A avaliação da abordagem aponta que a qualidade do pareamento de atributos é equivalente a uma solução que não considera a privacidade dos dados, e que a abordagem é capaz de preservar a privacidade dos dados. / The Privacy Preserve Record Linkage (PPRL) aims to identify entities, that can not
have their information disclosed (e.g., Medical Records), which correspond to the same
real-world object across different databases. It is crucial to the PPRL tasks that it is executed without revealing any information between the participants (database owners) during the PPRL task, to preserve the privacy of the original data. At the end of a PPRL task, each participant identifies which entities in its database are present in the databases of the other participants. Thus, before starting the PPRL task, the participants must agree on the entity and its attributes, to be compared in the task. In general, this agreement requires that participants have to expose their schemas, sharing (meta-)information that can be used to break the privacy of the data. This work proposes a semiautomatic approach to identify similar attributes (attribute pairing) to identify the entities attributes. The approach is inserted as a preliminary step of the PPRL (Handshake), and its result (similar attributes) can be used by subsequent steps (Blocking and Comparison). In the proposed approach, the participants generate a privacy-preserving representation (Data Signatures) of the attributes values that are sent to a trusted third-party to identify similar attributes from different data sources. Thus, by eliminating the need to share information about their schemas, consequently, improving the security and privacy of the PPRL task. The evaluation of the approach points out that the quality of attribute pairing is equivalent to a solution that does not consider data privacy, and is capable of preserving data privacy.
|
Page generated in 0.0649 seconds