• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of Sensory Feedback on Rhythmic Movement: A Computational Study of Resonance Tuning in Biological Systems

Williams, Carrie 20 November 2006 (has links)
Rhythmic movementssuch as swimming, flying, and walkingare ubiquitous in nature. Intrinsically active neural networks called central pattern generators (CPGs) provide the feedforward signals to actuate these movements, but the preferred movement frequency is often equivalent to the resonant frequency of the musculoskeletal system. Sensory feedback is essential to synchronize the neural and musculoskeletal systems to the mechanical resonant frequency, a phenomenon called resonance tuning. In this dissertation, we use a simple computational model of rhythmic movement to understand how the configuration of sensory feedback affects both the sensitivity of resonance tuning to parameter variation and the resiliency of resonance tuning to perturbation. Although previous studies have shown that resonance tuning is limited to frequencies that are above the intrinsic CPG frequency, we demonstrate that this limitation is only valid with negative feedback and with endogenously bursting CPG neurons. Specifically, we show that with positive feedback, resonance tuning occurs at frequencies that are below the intrinsic CPG frequency. Moreover, when the synaptic connections within the CPG are required for bursting activity, resonance tuning occurs both above and below the intrinsic CPG frequency with negative feedback and does not occur with positive feedback. Using Floquet analysis, we then demonstrate that perturbations decay more quickly when resonance tuning is realized with positive than with negative proportional feedback. Finally, we evaluate how the intrinsic CPG frequency, feedback gain, and mechanical damping affect the stability and range of resonance tuning with negative and positive feedback. Overall, these results indicate that the configuration of sensory feedback dramatically affects both the parameter space in which resonance tuning occurs and the stability of the resultant periodic motion.
2

Dynamics of Pitching Wave Energy Converter with Resonant U-Tank Power Extraction Device

Afonja, Adetoso J. 05 1900 (has links)
This research revolves around the concept design and theoretical validation of a new type of wave energy converter (WEC), comprising a pitching floater integrated with a resonant U-tank (RUT) and a Wells turbine as power take-off (PTO). Theoretical formulation of a fully coupled multi-body dynamic system, incorporating the thermodynamic processes of the RUT air chamber, its interaction with the PTO dynamics and their coupling with the floater is presented. Inaccuracies of the dynamic modeling of RUT based on Lloyd's low order model, which assumes constant hydrodynamic parameters irrespective of the frequency, are demonstrated by a series of high fidelity CFD simulations. These simulations are a systematic series of fully viscous turbulent simulations, using unsteady RANSE solvers, of the water sloshing at different frequencies of oscillation. Calibration of Lloyd’s model with CFD results evidenced that the RUT hydrodynamic parameters are not invariant to frequency. A numerical model was developed based on Simulink WEC-Sim libraries to solve the non-linear thermo-hydrodynamic equations of the device in time domain. For power assessment, parametric investigations are conducted by varying the main dimensions of the RUT and power RAOs were computed for each iteration. Performance in irregular sea state are assessed using a statistical approach with the assumption of linear wave theory. By superimposing spectrum energy density from two resource sites with RAO, mean annual energy production (MEAP) are computed. The predicted MEAP favorably compares with other existing devices, confirming the superior efficiency of the new proposed device over a larger range of incident wave frequency. / M.S. / This study present results of an investigation into a new type of wave energy converter which can be deployed in ocean and by its pitch response motion, it can harvest wave energy and convert it to electrical energy. This device consist of a floater, a U-tank (resonant U-tank) with sloshing water free to oscillate in response to the floater motion and a pneumatic turbine which produces power as air is forced to travel across it. The pneumatic turbine is used as the power take-off (PTO) device. A medium fidelity approach was taken to carry out this study by applying Lloyd’s model which describes the motion of the sloshing water in a resonant U-tank. Computational fluid dynamics (CFD) studies were carried out to calibrate the hydrodynamic parameters of the resonant U-tank as described by Lloyd and it was discovered that these parameters are frequency dependent, therefore Lloyd’s model was modelled to be frequency dependent. The mathematical formulation coupling the thermodynamic evolution of air in the resonant U-tank chamber, modified Lloyd’s sloshing water equation, floater dynamics and PTO were presented for the integrated system. These set of thermo-hydrodynamic equations were solved with a numerical model developed using MATLAB/Simulink WEC-Sim Libraries in time domain in other to capture the non-linearity arising from the coupled dynamics. To assess the annual energy productivity of the device, wave statistical data from two resource sites, Western Hawaii and Eel River were selected and used to carrying out computations on different iterations of the device by varying the tank’s main dimensions. This results were promising with the most performing device iteration yielding mean annual energy production of 579 MWh for Western Hawaii.
3

Numerical Analysis and Parameter Optimization of Portable Oscillating-Body Wave Energy Converters

Capper, Joseph David 14 June 2021 (has links)
As a clean, abundant, and renewable source of energy with a strategic location in close proximity to global population regions, ocean wave energy shows major promise. Although much wave energy converter development has focused on large-scale power generation, there is also increasing interest in small-scale applications for powering the blue economy. In this thesis, the objective was to optimize the performance of small-sized, portable, oscillating-body wave energy converters (WECs). Two types of oscillating body WECs were studied: bottom hinged and two-body attenuator. For the bottom-hinged device, the goal was to show the feasibility of an oscillating surge WEC and desalination system using numerical modeling to estimate the system performance. For a 5-day test period, the model estimated 517 L of freshwater production with 711 ppm concentration and showed effective brine discharge, agreeing well with preliminary experimental results. The objective for the two-body attenuator was to develop a method of power maximization through resonance tuning and numerical simulation. Three different geometries of body cross sections were used for the study with four different drag coefficients for each geometry. Power generation was maximized by adjusting body dimensions to match the natural frequency with the wave frequency. Based on the time domain simulation results, there was not a significant difference in power between the geometries when variation in drag was not considered, but the elliptical geometry had the highest power when using approximate drag coefficients. Using the two degree-of-freedom (2DOF) model with approximate drag coefficients, the elliptical cross section had a max power of 27.1 W and 7.36% capture width ratio (CWR) for regular waves and a max power of 8.32 W and 2.26% CWR for irregular waves. Using the three degree-of-freedom (3DOF) model with approximate drag coefficients, the elliptical cross section had a max power of 22.5 W and 6.12% CWR for regular waves and 6.18 W and 1.68% CWR for irregular waves. A mooring stiffness study was performed with the 3DOF model, showing that mooring stiffness can be increased to increase relative motion and therefore increase power. / Master of Science / As a clean, abundant, and renewable source of energy with a strategic location in close proximity to global population centers, ocean wave energy shows major promise. Although much wave energy converter development has focused on large-scale power generation, there is also increasing interest in small-scale applications for powering the blue economy. There are many situations where large-scale wave energy converter (WEC) devices are not necessary or practical, but easily-portable, small-sized WECs are suitable, including navigation signs, illumination, sensors, survival kits, electronics charging, and portable desalination. In this thesis, the objective was to optimize the performance of small-sized, oscillating body wave energy converters. Oscillating body WECs function by converting a device's wave-driven oscillating motion into useful power. Two types of oscillating body WECs were studied: bottom hinged and two-body attenuator. For the bottom-hinged device, the goal was to show the feasibility of a WEC and desalination system using numerical modeling to estimate the system performance. Based on the model results, the system will produce desirable amounts of fresh water with suitably low concentration and be effective at discharging brine. The objective for the two-body attenuator was to develop a method of power maximization through resonance tuning and numerical simulation. Based on the two- and three-degree-of-freedom model results with approximate drag coefficients, the elliptical cross section had the largest power absorption out of three different geometries of body cross sections. A mooring stiffness study with the three-degree-of-freedom model showed that mooring stiffness can be increased to increase power absorption.

Page generated in 0.3156 seconds