• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4482
  • 773
  • 465
  • 281
  • 269
  • 227
  • 200
  • 200
  • 200
  • 200
  • 200
  • 200
  • 189
  • 125
  • 111
  • Tagged with
  • 9103
  • 3593
  • 1689
  • 1181
  • 1136
  • 978
  • 937
  • 922
  • 916
  • 752
  • 739
  • 737
  • 687
  • 654
  • 642
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Marine mammal feeding niches in a changing Greenlandic ecosystem: insight from stable isotope and fatty acid tracers

Land-Miller, Haley January 2023 (has links)
No description available.
252

Habitat Selection of Temperate Bats at Different Temporal and Spatial Scales

Legros, Jade January 2023 (has links)
No description available.
253

Are landscape metrics reliable tools for modern conservation decision-making?

Serre, Bryant January 2023 (has links)
No description available.
254

Exploring The Effects Of Microplastics On Marine Biota

Seeley, Meredith Evans 01 January 2022 (has links)
There is mounting evidence that microplastics are a persistent and increasing hazard for aquatic organisms. The effects of microplastics on organisms and ecosystems are complex, however, and may be linked to a wide variety of particle characteristics including size, shape, polymer, additive chemistry, and degree of weathering. Assessing risk is complicated by the fact that many known effects of microplastics are sublethal, and that plastics have been postulated to interact with other stressors, such as pathogens. The work presented here expands our understanding of these complex effects. First, the impacts of microplastics on sedimentary microbial ecosystems and biogeochemical carbon and nitrogen cycles were investigated. A microcosm experiment using salt marsh sediment amended with polyethylene (PE), polyvinyl chloride (PVC), polyurethane foam (PUF) or polylactic acid (PLA) microplastics was conducted. We found that the presence of microplastics altered sediment microbial community composition and nitrogen cycling processes. Compared to control sediments without microplastics, PUF- and PLA-treated sediments promoted nitrification and denitrification, while PVC inhibited both processes. These results indicate that nitrogen cycling processes in sediments can be significantly affected by different microplastics, which may serve as organic carbon substrates for microbial communities. Second, we probed the virus-related mortality of a commercially important salmonid species under chronic exposure to nylon microfibers, polystyrene microplastics, and natural marsh grass microparticles. Mortality increased when fish were co-exposed to pathogen and microparticle, particularly nylon microfibers. This correlated with host viral load and mild gill inflammation. As such, we speculated that chronic exposure microplastics may create opportunities for pathogens to bypass defenses and colonize hosts via sensitive tissues. To investigate if this was enhanced by the physical properties of plastic microfibers, we assessed differences in mortality following chronic exposure to nylon microfibers and powder, finding that fibers had a greater effect than powdered counterparts. The importance of the timing of microplastic exposure was also confirmed by completing viral/microplastics co-exposures where microplastics were dosed before, after, or before and after viral introduction. Indeed, virulence was most enhanced when fish were exposed to microplastics pre-virus or chronically, significantly more so than post-virus only. Finally, we tested whether UV-weathering changed the effect of natural and plastic microparticles on disease-related mortality. We observed changes in the virulence effects of microparticles following UV-weathering, but the pattern of that change was inconsistent and merits further research. Considering their ubiquity and increasing concentrations globally, further research on the effects of microplastics is warranted. Particularly, the work here demonstrates that microplastics may influence entire communities and inorganic nutrient cycling systems, classifying microplastics as a potential planetary boundary threat. Further, we illustrate that even when microplastics alone may not have substantial effects on a fish population, when combined with disease they may amplify pathogen-related mortality significantly. More research on the interplay between microplastics and infectious disease is recommended, particularly as it may inform researchers on the risks of microplastics to human health.
255

Toward A Comprehensive Water Quality Model For The Chesapeake Bay Using Unstructured Grids

Cai, Xun 01 January 2022 (has links)
Chesapeake Bay is one of the most productive ecosystems on the US east coast which supports various living resources and habitat, and therefore has significant impacts on human beings and ecosystem health. Developing the capability of accurately simulating the water quality condition in the Chesapeake Bay, such as seasonal hypoxia, phytoplankton production, and nutrient dynamics, helps to better understand the interactions of hydrodynamical and biochemical processes, and more importantly, to predict conditions under changing climate and human intervention. Currently, most Chesapeake Bay models use structured grids that lack the flexibility for local refinements to fit complex geometry over both large and small scales, which hampers the allocation of local TMDLs for shallow water and small tributaries. In addition, few of them extend their simulations beyond the water column state variables, such as dissolved oxygen and nutrients, to include other living resources such as vegetation. These limitations motivate the model developments in this dissertation of: (1) a new comprehensive water quality model using high-resolution unstructured grids, which possesses the cross-scale capability to study interactions among water bodies and processes of different scales; and (2) a tightly coupled tidal marsh model, which is linked to the water quality model for water column to study the interactions between the marshes and surrounding aquatic system. The new modeling tool can be effectively utilized as a powerful tool for adaptive management in the Chesapeake Bay and can also be exported to other estuaries in the world.In this dissertation, Chapter 2 focuses on the development of a high-resolution water quality model in the water column and sediment flux part of the water quality model. This part of this study also demonstrates the importance of the correct representation of geometry, and the detrimental effects of artificial bathymetry smoothing on model simulations. Chapter 3 of this dissertation studies the impacts of sea-level rise (SLR) on seasonal hypoxia and phytoplankton production in the Chesapeake Bay with the newly developed water quality model. SLR is predicted to increase the hypoxic volume in the Chesapeake Bay by altering the physical processes and enhancing the estuarine respirations. Phytoplankton production in the shallow shoals is also predicted to increase under SLR, as a result of increased light utilization. Chapter 4 of this dissertation focuses on developing a new marsh model in the hydrodynamic-water quality model framework. This new model extends the model coverage to the tidal wetlands which are periodically inundated. The tidal marshes are suggested to affect the estuarine oxygen, carbon, and nutrient dynamics through tidal exchange, e.g., contributing the diel DO cycle. Chapter 5 studies the impacts of SLR on the biochemical processes in the York River Estuary, a tributary of the Bay that has extensive tidal marshes, with the fully-coupled hydrodynamic-water quality-marsh model. The SLR is predicted to enhance the exchanges between the marshes and the adjacent channel, which in turn further impacts the estuarine biochemical processes.
256

Connecting the dots: building social resilience to support sustainable food security policy in the Caribbean

Saint Ville, Arlette January 2017 (has links)
No description available.
257

Persistent effects of early life exposure to polycyclic aromatic hydrocarbons on DNA methylation in birds

Brandenburg, Jonas January 2017 (has links)
No description available.
258

Managing recreational Lake Trout Salvelinus namaycush fisheries for the future: developing harvest regulations for an unexploited population and investigating the effect of climate on spawning phenology

Lenker, Melissa January 2016 (has links)
No description available.
259

Phylogenetic, taxonomic, and functional diversity of wetland diptera communities

Grégoire-Taillefer, Amélie January 2017 (has links)
No description available.
260

The socio-environmental impacts of public urban orchards: a Montreal case-study

Colinas, Juliette January 2017 (has links)
No description available.

Page generated in 0.058 seconds