• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Genetic Programming Approach to Cost-Sensitive Control in Wireless Sensor Networks

Yousefi Zowj, Afsoon 01 January 2016 (has links)
In some wireless sensor network applications, multiple sensors can be used to measure the same variable, while differing in their sampling cost, for example in their power requirements. This raises the problem of automatically controlling heterogeneous sensor suites in wireless sensor network applications, in a manner that balances cost and accuracy of sensors. Genetic programming (GP) is applied to this problem, considering two basic approaches. First, a hierarchy of models is constructed, where increasing levels in the hierarchy use sensors of increasing cost. If a model that polls low cost sensors exhibits too much prediction uncertainty, the burden of prediction is automatically transferred to a higher level model using more expensive sensors. Second, models are trained with cost as an optimization objective, called non-hierarchical models, that use conditionals to automatically select sensors based on both cost and accuracy. These approaches are compared in a setting where the available budget for sampling is considered to remain constant, and in a setting where the system is sensitive to a fluctuating budget, for example available battery power. It is showed that in both settings, for increasingly challenging datasets, hierarchical models makes predictions with equivalent accuracy yet lower cost than non-hierarchical models.

Page generated in 0.0899 seconds