• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploration of Respirable Dust Particles Sourced From Rock Strata in an Underground Coal Mine

Gonzalez Jaramillo, Jonathan 12 November 2021 (has links)
Enactment of regulatory standards for respirable coal mine dust (RCMD) concentration and crystalline silica content, and advancements in mine ventilation and dust controls led to a steady decline of occupational lung disease among US coal miners between the early 1970s and the mid-1990s. Since that time, there has been an alarming resurgence of disease especially in central Appalachia—with little hard data to pinpoint the causative factors in the mine environment. This situation has emphasized the knowledge gap surrounding specific dust characteristics and their sources. Key observations from many disease cases have suggested that dust constituents sourced from the rock strata in the mine (i.e., the rock layers that surround the target coal seam) may be particularly important; and this fits with the general tendency to extract thinner coal seams, and thus more rock, in many central Appalachian mines. To explore the characteristics of rock-strata sourced dust and its possible influence on the overall RCMD, this thesis reports two primary research efforts: Chapter 1 encompasses a case study conducted in an underground coal mine in West Virginia. (This chapter was previously published in the proceedings of the 18th North American Mine Ventilation Symposium, and is being reproduced with permission of the licensor through.) Following precedent from other studies, respirable dust samples were collected from key locations including in the intake airway, downwind an operating roof bolter, and adjacent to the feeder breaker. Additionally, three locations downwind the production face were simultaneously sampled during four individual continuous miner cuts—which was a unique feature of the current study. Dust was analyzed using previously established methods, including scanning electron microscopy with energy dispersive X-ray (SEM-EDX) to determine particle size and mineralogy distributions. Where comparable, results were generally consistent with those from other central Appalachian mines. However, the unique production sampling scheme offered new insights regarding the shift in particle characteristics as dust moves downwind from the generation point. Changes in size and mineralogy suggested that rock-strata sourced particles, especially aluminosilicates, might interfere with the SEM-EDX classification of other particles, especially coal. To explore the issue of aluminosilicate interference with coal classification, and the possible reasons, Chapter 2 covers two main lines of study. First, existing RCMD samples and SEM-EDX metadata were re-examined. Results suggested that particle loading effects could be at least partly responsible for the appearance of inordinately high aluminosilicate abundance (and conversely low coal) in some samples (i.e., the mineral particles might deposit on the sample filter in close proximity to the coal). Additionally, the presence of coal-mineral microagglomerates (MAGs) was demonstrated. The second line of study in Chapter 2 was therefore to explore whether MAG formation could be due to the RCMD generation process or environmental conditions—rather than merely an artifact of the sampling procedure—and the dispersibility of MAGs, which may have important implications with respect to dust exposure and biological response. Laboratory-generated samples collected passively demonstrated that coal-mineral MAGs can indeed occur without influence from typical RCMD sampling equipment. MAGs were significantly dispersed by sonication in deionized water, though gentle swirling did not yield consistent results. Moreover, in a surfactant solution that mimics natural lung fluid, MAGs were also dispersed. Compared to deionized water, the surfactant may promote more dispersion of coal particles in particular. / Master of Science / Occupational illnesses such as black lung in underground coal mining are still a worrisome issue in the industry. This research was aimed at gaining insight into rock-strata sourced dust and its possible influence on the overall characteristics of respirable coal mine dust (RCMD). The rock strata surrounding the coal seam is often rich in silicates and silica. A case study of RCMD was conducted in a thin-seam mine in West Virginia. Samples were collected in various locations and analyzed using electron microscopy among other methods. Results indicated that mineral dust, especially aluminosilicates, can be very abundant near the production face and might interfere with the measurement of coal dust. To explore such interference, a follow-up study was performed by revisiting a subset of RCMD samples examined in prior work. This approach yielded evidence of coal-mineral microagglomerates. Additional efforts in the laboratory recreated agglomerate formation and demonstrated their dispersibility. Results suggested that the occurrence of microagglomerates is not entirely a direct consequence of the sampling methodology and highlighted their potential importance within the context of exposure assessment and possible biological response.
2

Vibration Enhanced Flooded Bed Dust Scrubber with Liquid-Coated Mesh Screen

Uluer, Mahmud Esad 18 October 2023 (has links)
Respirable coal mine dust (RCMD) is one of the biggest occupational health hazards. Dusty mining environments can cause life-threatening respiratory health problems for coal miners known as black lung. Over the last 20 years, the flooded bed dust scrubber (FBS) has been employed as an integral component of dust control strategies for underground continuous mining operations. These units have been shown to be effective and robust in mining environments; however, several technical challenges and knowledge gaps limit their performance and efficiency. Despite the capability of the FBS, there are numerous technical challenges that limit its performance and efficiency. In particular, the static panel filter, instrumental in most scrubber designs, is fundamentally limited in collection efficiency and causes numerous operational challenges including rapid clogging. Furthermore, the current design of the filter panel is not capable of evenly wetting the entire surface area. This allows dust-laden air to pass through the filter media and decreases the cleaning capability of the FBS. In this research, both a lab-scale and a full-scale vibration-enhanced FBS with a liquid-coated filter panel were designed, manufactured, and tested. The results confirmed that a vibration-induced filter panel enhances dust collection performance and reduces mesh clogging. In addition, laboratory-scale mesh clogging tests showed that a hydrophilic mesh provided superior clogging mitigation and better performance. Typical results from bench-scale tests showed notable improvements in dust collection efficiencies by over 6% in wet condition and over 7% in dry condition while reducing mass accumulation in the filter by almost 10% in wet condition and over 40% in dry condition. The prototype testing was less conclusive, with deviations between the static mesh and vibrating mesh depending on the mesh density and operating conditions. Nevertheless, with the highest mesh density tested (30-layer), the vibrating mesh notably outperformed the static mesh with superior collection efficiency and reduced airflow loss. The system was further analyzed to investigate the size-by-size recovery of dust particles to various endpoints in the scrubber, under both vibrating and static conditions. Results show that while a majority of the particles are recovered into the demister sump, nearly a quarter of the dust mass is recovered upstream of the screen. In addition, the data confirm that vibration prompts notable improvements to collection efficiency, particularly in the finest size class (- 2.5 micron). / Doctor of Philosophy / Coal mine dust is an unintended and unavoidable consequence of coal extraction operations that poses significant health and safety risks. The inhalation of small, respirable dust particles can cause incurable lung diseases, including silicosis and coal workers' pneumoconiosis known as black lung. To minimize occupational hazards of underground coal mine dust, the Mine Safety and Health Administration (MSHA) periodically brings legislation to the industry. The recent respirable dust rule mandates reducing the maximum allowable respirable dust concentrations in the mine environment to below 1.5 mg/m3 at the working face and below 0.5 mg/m3 at intake entries. In order to comply with these regulations, modern mining techniques utilize several dust mitigation strategies, and the flooded-bed dust scrubber (FBS) is one such technology used extensively on continuous miners. The conventional static panel filter, instrumental in most scrubber designs, however, is fundamentally limited in collection efficiencies due to a high clogging rate and a tradeoff between mesh density and airflow rate. Moreover, poorly wetted areas allow dust-laden air to pass through the filter media. To overcome these deficiencies, a novel liquid-coated vibrating mesh panel is introduced in this research. A laboratory-scale dust scrubber unit and a full-scale unit with a vibration-enhanced mesh screen panel were manufactured and employed to investigate the efficacy of the concept as compared to that of a static mesh. A series of experimental design studies were employed to determine the effective vibrational parameters, scrubber operational parameters, and the impact of mesh variations on dust collection and clogging mitigation. Optimized results from this research were also evaluated against those of a static mesh to determine performance improvement while investigating the mechanisms controlling dust collection and particle department through the scrubber system. Results from the laboratory study show that vibrating mesh conditions, higher water flow rates, and a hydrophilic mesh screen panel led to an improvement in the cleaning efficiency of the scrubber system. Compared to a static-mesh to FBS, the vibrating-mesh FBS showed a significant reduction in pressure drop across the mesh screen indicating lower air loss through the test duration. Overall, the findings confirm that vibrating mesh conditions have the ability to improve filter clogging issues while maintaining high collection efficiencies which can lead to better and healthier working conditions and prolonged operational time with less frequent maintenance. This research supports further technological advancement in mine dust mitigation technologies.
3

Application of a TGA Method to Estimate Coal, Carbonate, and Non-carbonate Mineral Fractions as a Proxy for the Major Sources of Respirable Coal Mine Dust

Jaramillo Taborda, Maria Lizeth 16 November 2021 (has links)
Inhalation of respirable dust in coal mines is a serious occupational health hazard which can lead to the development of chronic and irreversible lung diseases, such as Coal Worker's Pneumoconiosis (CWP) and Progressive Massive fibrosis (PMF). After the passage of the Federal Coal Mine Health and Safety Act (CMHSA) in the late 1960's the prevalence of CWP among US coal miners decreased. However, since the late 1990's a resurgence of lung diseases has been reported, particularly in central Appalachia. On the other hand, dust monitoring data suggest that concentrations of respirable coal mine dust (RCMD) and crystalline silica have been on a downward trend. This contradiction has prompted keen interest in detailed characterization of RCMD to shed light on dust constituents-and their sources. Such information might help miners understand where and under what conditions specific sources contribute to RCMD, and how dust controls and monitoring could be enhanced to mitigate the exposure to respirable hazards. Respirable dust particles generated in coal mines are generally associated with three primary sources: the coal strata that is mined and generates mostly coal particles that could contribute for lung diseases, the rock strata that is cut along with the coal and generates most of the respirable silica and silicates, and the rock dust products that are the main source of carbonates which could produce respiratory irritations. Thermogravimetric Analysis (TGA) is one of many analytical tools that might be used for dust characterization. Its primary benefit is that it can be used to apportion the total sample mass into three mass fractions (i.e., coal, carbonates, non-carbonates) which should be roughly associated with the primary dust sources (i.e., coal strata, rock dust products, rock strata) in many coal mines. This thesis consists of two main chapters: Chapter 1, outlines the research motivation, recaps the efforts to establish a standard TGA method for RCMD, and shows results of the validation experiments that were performed in the current work to enable application of the TGA method to a large set of RCMD and laboratory-generated dust samples. In Chapter 2, 46 lab-generated samples from primary dust source materials collected in 15 coal mines, and 129 respirable dust samples from 23 US coal mines are analyzed using the TGA method validated in Chapter 1. Results for both sets of samples are presented and the mine samples are interpreted based on sampling location, mining method and region. Additionally, Chapter 3 summarizes recommendations for future work. / Master of Science / The chronic exposure to dust generated in underground coal operations represents a serious health concern among coal miners that can lead to the development of lung diseases such as Coal Workers Pneumoconiosis (CWP or "black lung). Despite of dust compliance monitoring data that have shown that the concentrations of dust have been declining, since the late 1990's the number of US coal miners diagnosed with lung diseases has been increasing, especially in central Appalachia. This contradiction has prompted keen interest in detailed characterization of respirable coal mine dust (RCMD) to shed light on dust constituents-and their sources. Such information might help miners understand where and under what conditions specific sources contribute to RCMD, and how dust controls and monitoring could be enhanced to mitigate the exposure to respirable hazards. Thermogravimetric Analysis (TGA) has been proposed as an alternative approach for dust characterization. Its primary benefit is that it can be used to apportion the total sample mass into three mass fractions (i.e., coal, carbonates, non-carbonates) which should be roughly associated with the primary dust sources (i.e., coal strata, rock dust products, rock strata) in many coal mines. This thesis consists of two main chapters: Chapter 1, outlines the research motivation, recaps the efforts to establish a standard TGA method for RCMD, and shows results of the validation experiments that were performed in the current work to enable application of the TGA method to a large set of RCMD and laboratory-generated dust samples. In Chapter 2, 46 lab-generated samples from primary dust source materials collected in 15 coal mines, and 129 respirable dust samples from 23 US coal mines are analyzed using the TGA method validated in Chapter 1. Results for both sets of samples are presented and the mine samples are interpreted based on sampling location, mining method and region. Additionally, Chapter 3 summarizes recommendations for future work.
4

Toward Rapid Silica Analysis of CPDM Samples using Portable Fourier Transform Infrared Spectrometry

Greth, August Vidal 21 October 2024 (has links)
Continuous personal dust monitors (CPDMs) are widely used to monitor respirable coal mine dust (RCMD) to reduce miners' exposures, but they are unable to directly assess respirable crystalline silica (RCS) concentrations, which are linked to the recent rise of respiratory diseases among coal miners. This incompatibility is due to the composition of the CPDM's internal filter stub. The stub consists of a fibrous borosilicate filter attached to a polypropylene (PP) backing and a polytetrafluoroethylene (PTFE) binder, which interferes with standard analytical techniques. This study developed a method for indirect analysis of dust collected on the CPDM filter stub using portable direct-on-filter Fourier Transform infrared spectroscopy (DOF-FTIR) to rapidly quantify quartz, the primary analyte of silica in coal mines. The research consisted of four studies that developed and evaluated a three-step process for dust recovery, deposition, and analysis. These studies investigated techniques for separating dust from the CPDM filter media, compared mechanisms for dust deposition onto various substrates, and assessed the ability of FTIR and scanning electron microscopy with energy dispersive X-ray (SEM-EDX) to analyze the mineral characteristics of recovered dust. The resulting method involves submerging CPDM filter stubs in 5 mL of isopropyl alcohol (IPA) and shaking them for 1 minute, followed by deposition of the dust onto a 25-mm polyvinyl chloride (PVC) filter using a syringe-based system. The PVC filter was then scanned at four 8-mm offset locations at 90° intervals from the center. Evaluating this method using field and lab-generated CPDM filter stubs revealed low dust recovery from the stubs. It was also observed that results tended to underpredict the quartz mass as the total sample mass increased. Though adjustments for recovery can be made using a scale and the method can be limited to lower mass samples, more efforts can be made to investigate better dust recovery and improve quartz determination of the samples to increase confidence in the method. / Doctor of Philosophy / To reduce respiratory diseases among coal miners, US regulation requires dust sampling in underground coal mines to monitor the total respirable coal mine dust (RCMD) concentration miners are exposed to using a specific device, the continuous personal dust monitor (CPDM). However, the CPDM cannot be used to directly differentiate the characteristics of the dust, particularly silica, which is particularly hazardous. To do this, a method to indirectly analyze the dust collected on the CPDM's internal filter stub has been evaluated using a three-step method to recover the dust, deposit the dust onto a different filter type, and then analyze the dust using a spectrometer to determine the silica mass. Four studies were performed to develop the full method. These studies investigated how dust can be recovered from filters, how to deposit dust onto another filter, and how to then analyze the dust to determine its characteristics. This was done using multiple methods to determine the optimum three-step method to quantify the silica mass in the recovered dust. The studies ultimately developed a method involving submerging the CPDM filter stub in 5 mL of isopropyl alcohol (IPA) and shaking it for 1 minute to dislodge the dust. Then, the recovered dust was deposited on a 25-mm polyvinyl chloride (PVC) filter using a syringe. After deposition, the PVC filter was finally scanned at four 8-mm offset locations at 90° intervals from the center of the filter. These scans were then used to determine the silica mass. After testing this three-step method on field and lab-generated CPDM filter stubs, results showed low dust recovery from the stubs. It was also observed that results tended to underpredict the silica mass as the total RCMD mass increased. Although the dust left behind on the filter can be determined using a scale and the method can be limited to samples with smaller masses to avoid underpredicting the quartz mass, more work can be done to improve dust recovery, improve the silica determination, and put more confidence in the method.

Page generated in 0.0668 seconds