• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 596
  • 340
  • 128
  • 71
  • 26
  • 18
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 12
  • 10
  • Tagged with
  • 1469
  • 285
  • 224
  • 159
  • 151
  • 130
  • 100
  • 81
  • 80
  • 79
  • 76
  • 70
  • 68
  • 67
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Impact of 4-hydroxy-2-nonenal in Arabidopsis mitochondria

Winger, Alison Marie January 2007 (has links)
[Truncated abstract] A range of biotic and abiotic stresses increase levels of reactive oxygen species (ROS) in plants due to perturbations of chloroplast and mitochondrial metabolism and the generation of ROS in defence responses. The polyunsaturated fatty acids of membrane lipids are susceptible to ROS induced peroxidation yielding various aldehydes, alkenals and hydroxyalkenals including the cytotoxic compound 4-hydroxy- 2-nonenal (HNE). HNE has the potential to cause substantial oxidative damage in cells via its reactivity with sulfhydryl groups of cysteine (Cys) and lipoic acid, the imidazole group of histidine (His) and the ?-amino group of lysine (Lys) protein residues. Analysis of the components of the plant respiratory electron transport chain to HNE revealed a particular susceptibility to inhibition of activity of the alternative oxidase (Aox). Incubation with HNE prevented dimerisation of Aox protein, suggesting that one site of modification was the conserved cysteine residue involved in dimerisation and activation of this enzyme (Cys1). However, a naturally occurring isoform of Aox lacking Cys1 and unable to dimerise, LeAox1b from tomato, was equally sensitive to HNE inhibition, showing that other amino acid residues in Aox also interact with HNE and are likely responsible for inactivation of the enzyme. ... The broader impact of HNE on the whole Arabidopsis mitochondrial proteome was examined by use of various 2-dimensional gel separation techniques coupled with use of HNE-adduct antibodies. 32 proteins involved in a number of mitochondrial functions were found to be susceptible to modification by HNE, including components of the electron transport chain, the TCA cycle, as well as proteins involved amino acid metabolism and stress-responses. Implications of modification of these proteins by HNE are discussed. As HNE is produced in vivo during oxidative stress, the profile of mitochondrial targets of HNE was examined from Arabidopsis cell cultures exposed to various oxidative stress inducers. Menadione and hydrogen peroxide induced oxidative stress throughout the cell, while antimycin A initiated a mitochondrial targeted stress. A differential profile of mitochondrial proteins was observed to be modified by HNE in the various treatments. These results also showed that induction of stress within a whole cell can impact lipid peroxidation within the mitochondria. Overall, this work showed the presence and production of HNE in plant cells, and that HNE, both exogenous and endogenous, has the ability to modify a specific subset of mitochondrial proteins. In several cases this HNE modification was shown to have functional or structural consequences.
402

A comparison of objective versus subjective recording of respiratory rates in adult medical cardiac patients

Smith, Kristin K. January 1998 (has links)
Thesis (M.S.)--University of Missouri--Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves 54-55). Also available on the Internet.
403

Développement d'une approche originale de mesure directe de la respiration de Pseudomonas nautica à l'échelle cellulaire par cytométrie en flux / Development of a new method to measure bacterial respiration at the single cell level by flow cytometry

Mebarek, Lounis 26 February 2010 (has links)
Dans l'océan, la respiration microbienne est considérée comme le principal processus représentatif de l’oxydation biologique de la matière organique. La production correspondante de CO2 métabolique a été estimée à environ 22 Pg C a-1. Cependant, les intensités respiratoires qui se déroulent in situ sont généralement trop faibles (de plusieurs ordres de grandeur) pour être accessibles aux méthodes de mesure directes actuellement disponibles. Certaines sondes fluorescentes, comme le DiOC6(3) (Molecular Probes, USA) se sont révélées être très sensibles à l’intensité de la différence de potentiel électrochimique du proton (?µH+), qui caractérise les membranes mitochondriales et plasmiques qui portent le système respiratoire chez les cellules eucaryotes et procaryotes. Chez les mitochondries, le ?µH+ présente une relation linéaire avec le flux d'oxygène. À notre connaissance, aucune relation de ce type n'avait été établie dans le cas de cellules entières marines (micro-organismes). Lors de travaux antérieurs, G. Grégori s’est intéressé à la vitesse de respiration à l’obscurité d’une culture monospécifique de la Chlorophyceae Dunaliella tertiolecta (Butcher) en utilisant un oxygraphe à haute résolution (Oroboros) et une coloration des cellules par le DiOC6(3). Une relation linéaire a été mise en évidence et standardisée, entre la vitesse d’absorption d'oxygène par D. tertiolecta et son intensité de fluorescence verte spécifique induite par le DiOC6(3), permettant ainsi la mesure par cytométrie de flux de la vitesse de respiration de D. tertiolecta. L'étape suivante consiste à étendre la méthode aux procaryotes hétérotrophes, principaux responsables de la minéralisation de la matière organique dans l'océan. Dans le présent travail sont présentés les résultats obtenus sur l’eubactérie Pseudomonas nautica 617, une souche qui a été isolée dans notre laboratoire par P. Bonin en 1987. / In the Ocean, microbial respiration is considered as the major process representative of the organic matter biological oxidation. The corresponding metabolic CO2 production was estimated to be about 22 Pg C y–1. However, the in situ respiration rate is generally too low (by several orders of magnitude) to be accessible to the available direct measurement methods. Some fluorescent probes, such as DiOC6(3) (Molecular Probes, USA) have been shown to be very sensitive to changes in the proton electrochemical potential difference (?µH+), characterising mitochondrial and plasmic membranes bearing the cell respiratory system in eukaryotic and prokaryotic cells. In mitochondria, ?µH+ is linked to the flux of oxygen uptake by a linear relationship. To our knowledge, no such relationship has been established in the case of whole marine cells. In a previous works, G. Grégori addressed the dark respiration rate of the Chlorophyceae Dunaliella tertiolecta (Butcher) in axenic culture, both directly by using a highly sensitive oxygraph (Oroboros) and by staining cells with DiOC6(3). A linear relationship was established and standardized between the oxygen uptake by D. tertiolecta and its green fluorescence induced by DiOC6(3), enabling the measure by flow cytometry of the respiration rate of D. tertiolecta. The next step is to extend the method to heterotrophic prokaryotes which are responsible for most of the mineralization of the organic matter in the ocean. In the present work are presented results obtained on the eubacteria Pseudomonas nautica 617, a strain that has been isolated in our laboratory by P. Bonin in 1987.
404

Professional nurses' knowledge regarding weaning the critically ill patient from the mechanical ventilation

Demingo, Xavier Preston January 2011 (has links)
Mechanical ventilation (MV) is one of the most frequently used treatment modalities in the intensive care unit (ICU) (Burns, 2005:14). Up to 90% of critically ill patients in ICUs globally are connected to a mechanical ventilator. Although mechanical ventilation is a lifesaving intervention, it is expensive and is associated with diverse complications (Mclean, Jensen, Schroeder, Gibney & Skjodt, 2006: 299). Ventilator-associated pneumonia (VAP) accounts for 25% of all infections in ICU, with global crude mortality figures estimated at 20-70% (Craven, 2006:251). Minimising the time that a patient is connected to a mechanical ventilator to the absolute minimum can have considerable benefits in terms of decreased mortality and morbidity, as well as a decreased length of ICU stay and lower hospital costs. Critically ill patients therefore need to be weaned from the mechanical ventilator as soon as their condition that warranted the need for mechanical ventilation is stabilized. The process of weaning the critically ill patient from mechanical ventilation constitutes a significant proportion of total ventilator time. As professional nurses attend to the mechanically ventilated patient 24 hours a day, they have a vital role to play in the collaborative management of the patient requiring weaning from mechanical ventilation. The objectives of this study were to explore and describe the professional nurses’ knowledge regarding weaning the critically ill patient from mechanical ventilation. Based on the results, recommendations in the form of a protocol were made in order to improve the professional nurses’ knowledge and enhance the care of the mechanically ventilated patient. A quantitative design, which was exploratory, descriptive and contextual in nature, was utilised for the study. The data collection instrument of choice was a self-administered questionnaire. Convenience, non-probability sampling was the sampling method chosen for the purpose of this study. Collected data were analysed with the assistance of a statistician using descriptive and inferential statistics. Results were displayed in the form of graphs and tables. The results obtained in the study, combined with data from the literature review, were used to develop recommendations to enhance vi professional nurses’ knowledge regarding weaning the critically ill patient from mechanical ventilation. The recommendations were presented in the form of a protocol based on the available evidence. Ethical principles as they relate to conducting research were adhered to throughout the study.
405

Purification et caractérisation d'un super-complexe respiratoire / Purification and characterization of a respiratory supercomplex

Bergdoll, Lucie 12 September 2014 (has links)
Les membranes impliquées dans les processus bioénergétiques arborent une très grande densité de protéines, paramètre déterminant pour leur organisation supra-moléculaire. Dans ce travail, nous avons utilisé la bactérie thermophile Geobacillus stearothermophilus comme modèle pour étudier la formation de super-complexes de protéines membranaires, en vue d'une étude structurale. Nous avons purifié et caractérisé un super-complexe comprenant une menaquinol: cytochrome c oxydoréductase (b6c), un cytochrome c550 et une cytochrome c oxydase caa3. En combinant des titrations par spectroscopie optique et résonance paramagnétique électronique, nous avons pu déterminer les potentiels d'oxydo-réduction de la plupart des cofacteurs et combler ainsi une lacune dans l'étude des chaînes de transfert d'électrons utilisant des quinones à bas potentiel redox, les ménaquinones. Nous avons ainsi montré que les potentiels redox des cofacteurs du cytochrome b6c terminés par celui des quinones. Ce travail va à l'encontre de données partielles antérieures publiées, mais est en parfait accord avec les modèles du Q-cycle de Peter Mitchell. Les résultats obtenus ont des répercussions sur les rendements bioénergétiques des différents maillons de la chaîne de transfert. / Bioenergetic membranes present a high protein density - a crucial factor for their organizationinto super-complexes. This project uses the thermophilic bacteria Geobacillus stearothermophilusas a model to study the formation of membrane protein super-complexes with the aim of structuralstudies. We purified and characterized a super-complex between a menaquinone : cytochromec oxidoreductase (b6c), a cytochrome c550, and a cytochrome c oxidase caa3. Using both opticaland EPR spectroscopy methods, we performed the redox titrations of most of the redox cofactorsof the super-complex. Thus, these results enable a new understanding of menaquinone-usingelectron transport chains, showing that quinones’ redox potential determines the redox potentialof the cytochrome b6c’s cofactors. The conclusions differ from previous partial data, althoughthey fit perfectly with Peter Mitchell’s model of the Q-cycle. These unexpected redox potentialsimpact bioenergetic yields at different levels of the electron transfer chain.
406

Réponses de la respiration à l'augmentation de la température nocturne chez le riz : production de biomasse et de grains et conséquences pour les modèles de culture / Respiration response to increased night temperature in rice : biomass andgrain productions and implications for crop models

Peraudeau, Sébastien 19 December 2014 (has links)
Sous un climat tropical humide, l'augmentation de la température nocturne a été associée à une diminution du rendement chez le riz. Une des hypothèses sous-tendant cette diminution est l'augmentation du taux de respiration nocturne (Rn) diminuant les ressources carbonées disponibles pour la croissance de la plante. La respiration mitochondriale est communément divisée en deux composantes fonctionnelles :- la respiration de maintenance (Rm), qui est associée à toutes les réactions biochimiques requises pour entretenir la biomasse existante. Le taux de Rm doublerait suite à une augmentation de la température ambiante de 10°C (Q10 = 2) ;- la respiration de croissance (Rg), qui est associée à tous les processus impliqués dans la création de biomasse. Cette composante de la respiration est principalement dépendante de la disponibilité en carbohydrates dans la plante, et donc de la photosynthèse.Ce travail de thèse a pour objectifs de (1) déterminer l'effet instantané (sans acclimatation) et sur le long terme (acclimatation) de l'augmentation de la température nocturne, proche de celle prédite par les scénarios climatiques, sur la respiration et la production de biomasse et de grains, (2) évaluer le coût de Rn en terme de biomasse à l'échelle de la plante entière, (3) estimer la respiration de maintenance (Rm) et sa réponse à l'augmentation de la température, et (4) évaluer l'effet de la valeur Q10 sur la modélisation de la production en biomasse. Pour atteindre ces objectifs, trois expérimentations (dont une inexploitable) ont été conduites en serre, deux en chambres de culture et une au champ, à Montpellier (France) et à la station expérimentale de l'IRRI (International Rice Research Institute, Philippines). L'augmentation modérée de la température nocturne de 1.9°C au champ et 3.5°C en chambre de culture de l'initiation paniculaire à maturité, et de 3.8 à 5.4°C en serre du repiquage à maturité, a entraîné l'augmentation significative de Rn (+13 à +35%). Dans le même temps, cette augmentation n'a pas eu d'effet significatif sur la production de biomasse et de grains des écotypes indica et aus, mais la production en grains de l'écotype japonica a été significativement plus faible. Le coût en biomasse de la respiration, en conditions de température nocturne plus élevée, a augmenté légèrement mais n'a pas été associé à une variation significative de la production de biomasse. L'augmentation de la température nocturne sur le long terme (acclimatation) a eu un impact plus faible sur Rn (facteur de 1.14 à 1.67 entre 21 et 31°C) que l'augmentation instantanée (sans acclimatation) (facteur 2.4 entre 21 et 31°C). Le coût quotidien en biomasse de Rm, a été de 0.3 à 1.2% (feuilles complètement développées) et de 1.5 à 2.5% (plantules entières). La Rm a augmenté d'un facteur 1.49 entre 21 et 31°C et représentait environ 33% de la respiration nocturne. Ce facteur est plus faible que l'hypothèse du Q10 = 2 qui surestime les effets de l'augmentation des températures sur Rm.Le modèle d'analyse de sensibilité a montré que la valeur du coefficient Q10 a un rôle significatif dans la prédiction de la production de biomasse dans les modèles de culture. Le rendement simulé diminue de 9% (Q10 = 2) et de 5% (Q10 = 1.5) lorsque la température moyenne journalière augmente de 2°C. Ainsi, prendre en compte l'acclimatation dans la réponse des plantes à l'augmentation des températures est important pour augmenter la précision des modèles. L'augmentation de la précision des modèles passera aussi par l'analyse des variations de la respiration en conditions naturelles. / In tropical climate, increasing night temperature was reported to be associated with a decline in grain yield in rice. This can be partly due to an increase in night respiration rate (Rn) which causes a depletion of carbohydrate supply available for plant growth. Mitochondrial respiration is commonly divided in two functional components; - Maintenance respiration (Rm) which is associated with all biochemical reactions required to maintain existing biomass. The rate of this respiration component would double when ambient temperature increase by 10°C (Q10 = 2). - Growth respiration which is associated with all processes involved in establishment of new biomass. This respiration component is mainly driven by carbohydrate supply and thus, by the photosynthesis rate. The present work aims to (1) determine the effects of short-term (without acclimation) and long-term (with acclimation) increase in night temperature similar to that projected by future climate scenarios on vegetative biomass production and grain yield; (2) evaluate, in terms of loss of biomass, the cost of Rn at plant scale; (3) estimate the maintenance respiration rate (Rm) and its response to temperature; and (4) evaluate the impact of Q10 value on biomass production. To achieve these objectives, three experiments (one unexploitable) were conducted in greenhouses, two in growth chambers and one in the field, at Montpellier (France) or at the experimental station of IRRI (International Rice Research Institute). The moderate increase in night temperature from panicle initiation to maturity in the field by 1.9°C and in growth chambers by 3.5°C, and form transplanting to maturity in greenhouse experiments by 3.8 to 5.4°C, did affect significantly Rn that increased by 13 to 35%. In the same time, it did not affect significantly biomass production and grain yield for indica and aus cultivars, whereas grain production decline was observed for japonica. Calculated biomass losses due to increased Rn under increased night temperature were important but were not associated with a change in biomass production or grain yield. Effect of long-term exposure to increased night temperature (acclimation) was smaller (factor 1.14 to 1.67 between 21 to 31°C) than that of short-term exposure (without acclimation) (factor 2.4 between 21 to 31°C). In this work, 0.3 to 1.2% (expanded leaves) and 1.5 to 2.5% (whole seedlings) of existing dry biomass was lost daily to Rm. The Rn was composed by about 33% of Rm, which increased by factor 1.49 between 21 and 31°C. This is below the common assumption of Q10 = 2 that thus overestimates the effect of increasing night temperature on Rm.A model sensitivity analysis showed that the Q10 value is important in the prediction of biomass production in crop models. Yield is expected to decline by 9% (Q10 = 2 assumption) and by 5% (Q10 = 1.5 assumption) with increasing mean daily temperature by 2°C. Thus, taking into account the acclimation response to temperature change is important for models accuracy. Making crop models more accurate requires more knowledge thermal effect on respiration in the field.
407

L'Interactions entre la photorespiration avec le métabolisme primaire des feuilles d’Arabidopsis thaliana : Caractérisation de mutants pour la glycolate oxydase et la glutamate : glyoxylate aminotransférase 1 / Interactions between photorespiration, nitrogen assimilation and day respiration

Dellero, Younès 14 December 2015 (has links)
A la lumière, l’activité carboxylase de la RuBisCO permet de fixer le CO2 inorganique en matière organique, sous forme de 3-phosphoglycérate (3-PGA), qui sera utilisé pour la biosynthèse de sucres, d’acides organiques et aminés, de la paroi végétale etc. Cependant, elle possède aussi une activité oxygénase qui produit du 3-PGA et du 2-phosphoglycolate. Ce dernier composé étant toxique, il est métabolisé en 3-PGA par le cycle photorespiratoire qui se déroule dans le chloroplaste, le peroxysome et la mitochondrie. Malgré une perte partielle en carbone et en azote, l’importance de la photorespiration pour les plantes est illustré par les phénotypes néfastes que les mutants d’enzymes photorespiratoires présentent dans l’air (comme un retard de croissance, la chlorose, et de la létalité) et qui sont absents en fort CO2. Ceci pourrait refléter des interactions étroites entre la photorespiration et le métabolisme primaire des plantes. Afin de mieux comprendre ces interactions et la mise en place des phénotypes photorespiratoires, des mutants pour la glycolate oxydase (GOX) et la glutamate:glyoxylate aminotransférase ont été caractérisés à travers plusieurs analyses complémentaires: des échanges gazeux, de la fluorescence chlorophyllienne, du marquage des métabolites avec du 13C, des dosages de métabolites, de cofacteurs, et de la RuBisCO. Les résultats montrent que, suite à un transfert de fort CO2 dans l’air, l’inhibition de la photosynthèse observée chez nos mutants est principalement due à un défaut du recyclage du carbone photorespiratoire qui diminue l’activité de la RuBisCO. Cette inhibition photosynthétique a un impact négatif sur la quantité de RuBisCO dans les feuilles de ces mutants par rapport aux plantes contrôles. De plus, lorsque l’inhibition de la photosynthèse est trop importante chez nos mutants photorespiratoires, la carence en carbone déclenche de la sénescence dans leurs feuilles âgées. En parallèle, une comparaison des paramètres cinétiques de la GOX d’A. thaliana (plante en C3) et de Z. mays (plante en C4) associée à la mesure d’effets isotopiques 13C et 2H a révélé que ces enzymes partageaient des paramètres Michaéliens équivalents pour le glycolate, ainsi qu’un mécanisme réactionnel identique mettant en jeu un transfert d’hydrure. / In the light, the RuBisCO carboxylase activity assimilates inorganic CO2 into organic compounds, via the production of 3-phosphoglycerate (3-PGA) that is used for the biosynthesis of sugars, organic and amino acids, plant cell walls etc. However, it also has an oxygenase activity that makes 3-PGA and 2-phosphoglycolate (2-PG). The toxic 2-PG is metabolized to 3-PGA by the photorespiratory cycle, which takes place in chloroplasts, peroxisomes and mitochondria. Despite a partial loss of carbon and nitrogen, the importance of photorespiration for growth can be seen by the negative phenotypes exhibited by photorespiratory enzyme mutants in air (i.e. slow growth, leaf chlorosis, and sometimes lethality), which are not observed under high CO2 conditions. This may reflect the metabolic interactions between photorespiration and plant primary metabolism. To better understand such interactions and the development of photorespiratory phenotypes, mutants for glycolate oxidase (GOX) and glutamate:glyoxylate aminotransferase have been characterized by several complementary methods: analysis of gas exchanges, chlorophyll fluorescence,13C-labeling of metabolites, measurements of metabolites, cofactors and RuBisCO levels. The results show that, after a high CO2-to-air transfer, the inhibition of photosynthesis in the mutants is mainly due to a defect in photorespiratory carbon recycling leading to a decreased RuBisCO activity. The inhibition of carbon assimilation negatively impacts mutant leaf RuBisCO content when compared to wild-type plants. In the mutants, when photosynthetic inhibition is too high, the resulting carbon starvation triggers the onset of senescence in their old leaves. In parallel to this work, a comparison of the kinetic parameters of GOX from A. thaliana (C3 plant) and Z. mays (C4 plant) coupled to measurements of 13C and 2H kinetic isotopic effects showed that these enzymes share similar Michaelian parameters for glycolate, and a similar hydride transfer reaction mechanism.
408

Functional analysis of the putative mitochondrial copper chaperone AtCox11

Radin, Ivan 04 February 2015 (has links)
Cox11 (cytochrome c oxidase 11) is an ancient and conserved protein family present in most respiring organisms. Studies of several family members, mainly in yeast and bacteria, have revealed that these proteins are in charge of Cu+ delivery to the respiratory complex IV (COX). Absence of Cox11 leads to a non-functional COX complex and a complete respiratory deficiency. Although it is assumed that homologues in other species perform the same function, experimental data supporting this notion are lacking. The aim of this work was to characterize the putative Arabidopsis homologue AtCox11 (encoded by locus At1g02410) and to determine its functions. Comparison of AtCox11 with the well-studied ScCox11 in yeast revealed that the two proteins share high similarity in their sequences (32% amino acid identity) and in the predicted secondary structures. Surprisingly, despite this high similarity AtCox11 proved not to be able to functionally replace the yeast protein in ΔSccox11 yeast deletion strains. As presumed, AtCox11 is localized to mitochondria, probably tethered to the inner mitochondrial membrane with its C-terminus facing the intermembrane space. The subsequent experimental work addressed the functions of AtCox11. To this end AtCOX11 knock-down (KD) and overexpression lines (OE) were generated and their impact on plant phenotype was investigated. KD lines that were obtained by artificial micro RNA technology, possess approximately 30% of the WT AtCOX11 mRNA levels. Overexpression resulting in 4-6 fold higher AtCOX11 mRNA levels, was achieved by placing AtCOX11 under the control of the 35S promoter. Remarkably, both KD and OE plants had reduced levels of COX complex activity (~45% and ~80%, respectively) indicating that AtCox11 is, as expected, involved in COX complex assembly. The KD and OE plants exhibited reduced root lengths and pollen germination rates (compared to WT). As both processes are dependent on respiratory energy, these phenotypic changes seemingly result from the reduced COX activity. Interestingly, the short-root phenotype in OE plants was rescued by a surplus of copper in the media, whereas copper deficiency intensified the phenotype. By contrast, KD plants did not respond to changes of the copper concentration. This difference in the copper response between KD and OE plants hints at a different cause for the reduced COX activity. It is proposed that the concentration of AtCox11 in KD plants limits the efficient insertion of Cu+ into COX, independent of the available copper concentration. In OE plants, binding of the limited copper by the high AtCox11 level may lead to a copper deficiency for the copper chaperone AtHcc1 that is required to load copper to subunit AtCoxII. Indeed, addition of copper to the media was able to rescue the phenotype. In line with these data, the analysis of the expression pattern of AtCOX11 revealed that it is expressed in tissues which require substantial mitochondrial and COX biogenesis to sustain their high metabolic and/or cell division rates. Furthermore AtCOX11 was shown to be up-regulated as part of the plant’s response to increased oxidative stress induced by the addition to the plant media of peroxides or inhibitors of respiratory complexes. The up-regulation of AtCOX11 in response to oxidative stress was corroborated with publicly available RNA microarray data and analysis of the AtCOX11 promoter, which revealed the presence of a number of potential oxidative stress responsive elements. Taken together, the experimental results presented in this thesis support the conclusion that AtCox11 is a member of the conserved Cox11 protein family. Most probably, this mitochondrial protein participates in the assembly of the COX complex by inserting Cu+ into the CuB center of the AtCoxI subunit. In addition to this expected role, the data indicate that AtCox11 might participate in cellular oxidative stress response and defense via a yet unknown mechanism.
409

Soil Co2 Efflux and Soil Carbon Content as Influenced by Thinning in Loblolly Pine Plantations on the Piedmont of Virginia

Selig, Marcus Franklin 30 July 2003 (has links)
The thinning of loblolly pine plantations has a great potential to influence the fluxes and storage of carbon within managed stands. This study looked at the effects of thinning on aboveground carbon and mineral soil carbon storage, 14-years after the thinning of an 8-year-old loblolly pine plantation on the piedmont of Virginia. The study also examined soil respiration for one year following the second thinning of the same stand at age twenty-two. The study was conducted using three replicate .222 hectare stands planted using 3.05 by 3.05 meter spacing in 1980 at the Reynolds Homestead in Critz, VA. Using two different sample collection methods it was determined that soil carbon was evenly dispersed throughout thinned plots, and that random sampling techniques were adequate for capturing spatial variability. Soil carbon showed a significant negative correlation with soil depth (p=0.0001), and by testing the difference between intercepts in this relationship, it was determined that thinning significantly increased soil carbon by 31.9% across all depths (p=0.0004). However, after accounting for losses in aboveground wood production, thinning resulted in an overall 10% loss in stand carbon storage. However, this analysis did not take into account the fate of wood products following removal. Soil respiration, soil temperature, and soil moisture were measured every month for one year near randomly selected stumps and trees. In order to account for spatial variation, split plots were measured at positions adjacent to stumps and 1.5 meters away from stumps. Soil temperature and moisture were both significantly affected by thinning. Regression analysis was performed to determine significant drivers in soil CO2 efflux. Temperature proved to be the most significant driver of soil respiration, with a positive correlation in thinned and unthinned stands. When modeled using regression, thinning was a significant variable for predicting soil respiration (p < 0.0009), but explained only 3.4% of the variation. The effects of thinning were responsible for decreased respiration, however, when coupled with increased temperatures, soil respiration was elevated in thinned stands. / Master of Science
410

Soil Carbon Dioxide Efflux in Response to Fertilization and Mulching Treatments in a Two-Year-Old Loblolly Pine (Pinus taeda L.) Plantation in the Virginia Piedmont

Pangle, Robert E. 27 December 2000 (has links)
Due to concern over the increasing concentration of carbon dioxide in the atmosphere, forest researchers and managers are currently studying the effects of varying silvicultural and harvesting practices on the carbon dynamics of intensely managed forest ecosystems. Soil carbon dioxide efflux resulting from soil microbial activity and root respiration is one of the major components of the total carbon flux in forested ecosystems. In an effort to examine the response of soil carbon dioxide efflux to changes in soil factors, nutrient availability, temperature, and moisture, soil respiration rates were measured monthly over an entire year in a two-year-old loblolly pine (Pinus taeda L.) plantation subjected to fertilization and mulching treatments. A dynamic, closed-chamber infrared gas analysis system was used to measure efflux rates from plots treated with one of four treatment combinations including: nitrogen (115 kg/ha) and phosphorus (11.5 kg/ha) fertilization with black landscape cloth (mulch), fertilization without mulch, mulch without fertilization, and no treatment (control). For each treatment combination, plots were established at the seedling base and 1.22 m away from the seedling base to examine the effect of seedling roots on soil carbon dioxide efflux rates. Soil temperature and moisture were measured at each chamber position monthly and soil coarse fragments, soil nutrient levels, percent carbon, root biomass and coarse woody debris were measured beneath 64 chambers at the end of the study. Fertilization had no significant effect on efflux rates during any of our monthly sampling sessions despite the fact that fertilized seedlings experienced significant increases in both above and belowground biomass. Conversely, regression analysis of growing season soil carbon dioxide efflux rates revealed a slightly negative correlation with both total seedling nutrient uptake and biomass. Rates in plots with mulching were significantly higher than rates from non-mulched plots during five monthly measurement sessions, and higher rates in mulched plots during winter months was attributable to warmer soil temperatures. Rates at the seedling base were always significantly higher than rates in plots away from the seedling. Although rates were always higher at the seedling base, the variability observed was only weakly correlated with the amount of pine roots present beneath respiration chambers. Utilizing soil temperature and moisture, soil carbon, and cuvette fine root biomass in a regression model explained 54% of the variance observed in efflux rates across the yearlong study period. Soil temperature alone explained 42.2% of the variance, followed by soil carbon and soil moisture at 5.2% and 2.7% respectively. The amount of pine fine roots under measurement chambers accounted for only 2.4% of the variance. An additional 1.5% was explained by other factors such as soil phosphorus, coarse woody debris, non-pine root biomass, and soil calcium. An examination of the factors affecting the spatial patterns of soil carbon dioxide efflux revealed that total soil carbon and the amount of fine pine root biomass beneath cuvette base rings explain 38% and 11% respectively, of the observed variability in mean annual soil carbon dioxide efflux from differing plots. The most influential factor affecting soil carbon dioxide efflux during the yearlong study period was soil temperature and modeling of seasonal soil carbon dioxide efflux rates from managed forests using both soil temperature and moisture should be achievable with the establishment of data sets and statistical models covering a range of sites differing in productivity, stand age, and management intensity. The establishment of data sets and statistical models across a variety of forest sites should account for the changing influence of soil carbon levels, aboveground biomass, microbial activity, organic matter inputs, and root biomass on soil carbon dioxide efflux. / Master of Science

Page generated in 0.103 seconds