Spelling suggestions: "subject:"reticulados residuais"" "subject:"reticulados residuais.os""
1 |
Un estudio algebraico en subvariedades de reticulados residuados y sus subreductos implicativosCastaño, Diego Nicolás 15 May 2013 (has links)
Abordamos diferentes problemas algebraicos en la variedad de los reticulados residuados
integrales, conmutativos y acotados, así como tambi´en en la variedad de las álgebras
de implicación de Lukasiewicz (subreductos implicativos de las MV-álgebras).
Damos una construcción que permite sumergir todo hoop de Wajsberg en una MV-
álgebra y la utilizamos para desarrollar dualidades topológicas para ciertas clases de hoops
de Wajsberg y para caracterizar los hoops de Wajsberg k-valuados libres. Estudiamos
la descomponibilidad de las álgebras libres para diferentes subvariedades de reticulados
residuados, probando la indescomponibilidad en ciertos casos y caracterizando las subvariedades
de reticulados residuados pseudocomplementados que poseen sus álgebras libres
descomponibles. Estudiamos tambi´en los elementos regulares de un reticulado residuado,
introduciendo la noción de variedad regular y estableciendo sus conexiones con la
traducción negativa de Kolmogorov.
Obtenemos una representaci´on sencilla de las álgebras de implicación de Lukasiewicz
finitas como crecientes en productos de MV-cadenas finitas y damos una dualidad topol
ógica intr´ınseca para las álgebras de implicación. Caracterizamos la permutabilidad
de congruencias en dichas álgebras, probamos que todas las subcuasivariedades son variedades
y mostramos que todos los miembros finitos de esta variedad son débilmente
proyectivos. Estudiamos tambi´en las clases algebraicamente expandibles en esta variedad,
así como también las funciones algebraicas, especialmente para la subvariedad generada
por la cadena de tres elementos. / We deal with different algebraic problems in the variety of integral, commutative,
bounded residuated lattices, as well as in the variety of Lukasiewicz implication algebras
(implicative subreducts of MV-algebras).
We give a construction that allows us to embed anyWajsberg hoop into an MV-algebra
and use it to develop topological dualities for certain classes of Wajsberg hoops and to
characterize the free k-valued Wajsberg hoops. We study the decomposability of free
algebras in different subvarieties of residuated lattices, establishing the indecomposability
for some cases and characterizing the subvarieties of pseudocomplemented residuated
lattices whose free algebras are decomposable. We also study the regular elements of a
residuated lattices, introducing the notion of regular variety and establishing connections
with the negative Kolmogorov translation.
We obtain a simple representation of finite Lukasiewicz implication algebras as upsets
in products of finite MV-chains and give an intrinsic topological duality for implication
algebras. We characterize congruence permutability for these algebras, prove that any
subquasivariety is a variety and show that every finite member of this variety is weakly
projective. We also study algebraically expandable classes in this variety, as well as algebraic
functions, especially for the subvariety generated by the three-element chain.
|
2 |
Algebraic semantics for Nelson?s logic SSilva, Thiago Nascimento da 25 January 2018 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2018-03-02T23:39:14Z
No. of bitstreams: 1
ThiagoNascimentoDaSilva_DISSERT.pdf: 675458 bytes, checksum: 9123812e69a846020d3cd6346e530e1e (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2018-03-13T18:55:45Z (GMT) No. of bitstreams: 1
ThiagoNascimentoDaSilva_DISSERT.pdf: 675458 bytes, checksum: 9123812e69a846020d3cd6346e530e1e (MD5) / Made available in DSpace on 2018-03-13T18:55:45Z (GMT). No. of bitstreams: 1
ThiagoNascimentoDaSilva_DISSERT.pdf: 675458 bytes, checksum: 9123812e69a846020d3cd6346e530e1e (MD5)
Previous issue date: 2018-01-25 / Al?m da mais conhecida l?gica de Nelson (?3) e da l?gica paraconsistente de Nelson
(?4), David Nelson introduziu no artigo de 1959 "Negation and separation of concepts
in constructive systems", com motiva??es de aritm?tica e construtividade, a l?gica que
ele chamou de "?". Naquele trabalho, a l?gica ? definida por meio de um c?lculo (que
carece crucialmente da regra de contra??o) tendo infinitos esquemas de regras, e nenhuma
sem?ntica ? fornecida. Neste trabalho n?s tomamos o fragmento proposicional de ?, mostrando que ele ? algebriz?vel
(de fato, implicativo) no sentido de Blok & Pigozzi com respeito a uma classe
de reticulados residuados involutivos. Assim, fornecemos a primeira sem?ntica para ?
(que chamamos de ?-?lgebras), bem como um c?lculo estilo Hilbert finito equivalente ?
apresenta??o de Nelson. Fornecemos um algoritmo para construir ?-?lgebras a partir de
?-?lgebras ou reticulados implicativos e demonstramos alguns resultados sobre a classe
de ?lgebras que introduzimos. N?s tamb?m comparamos ? com outras l?gicas da fam?lia
de Nelson, a saber, ?3 e ?4. / Besides the better-known Nelson logic (?3) and paraconsistent Nelson logic (?4), in
Negation and separation of concepts in constructive systems (1959) David Nelson introduced
a logic that he called ?, with motivations of arithmetic and constructibility. The
logic was defined by means of a calculus (crucially lacking the contraction rule) having
infinitely many rule schemata, and no semantics was provided for it. We look in the present dissertation at the propositional fragment of ?, showing that it
is algebraizable (in fact, implicative) in the sense of Blok and Pigozzi with respect to a
class of involutive residuated lattices. We thus provide the first known algebraic semantics
for ?(we call them of ?-algebras) as well as a finite Hilbert-style calculus equivalent to
Nelson?s presentation. We provide an algorithm to make ?-algebras from ?-algebras or
implicative lattices and we prove some results about the class of algebras which we have
introduced. We also compare ? with other logics of the Nelson family, that is, ?3 and
?4.
|
Page generated in 0.0715 seconds