Spelling suggestions: "subject:"reticulitermes virginia's"" "subject:"reticulitermes virginica""
1 |
Study of Subterranean Termite Gut Symbionts as Affected by Chitosan Treatment of WoodTelmadarrehei, Telmah 03 May 2019 (has links)
The overall aim of this study was to investigate the potential influence of chitosan, a biodegradable and antimicrobial compound, on termite hindgut symbionts. For this purpose, a morphological quantifying technique was conducted on the protist community’s hindgut after feeding termites on chitosan-treated wood. The aim was to characterize the diversity of protist species in the economically important dark southern subterranean termite, Reticulitermes virginicus. A molecular phylogenetic analysis of the V3 and V4 hyper-variable regions of 16S ribosomal RNA (rRNA) gene of the bacterial community in the hindgut of R. virginicus was performed on termites exposed to chitosan treatment. Light microscopy visualization of protist species residing in the hindgut of workers showed presence of ten protist species both in the control sample and in termites fed a low concentration of chitosan. In this study, the coexistence of two species of the genus Trichonympha (T. agilis and T. burlesquei) is reported for the first time in R. virginicus. Monocercomonas sp. and Trichomitus trypanoides were the only two protists found in termites exposed to wood treated with higher chitosan concentration solutions and the absence of wood fragments in their food vacuoles was clear. This feature indicates that these two protists may not be involved in the digestion of the wood fragments impregnated with chitosan. The results of this study indicated that the potential effect of chitosan caused elimination of the protist species in termite hindguts. The genomic DNA of bacterial hindgut community of R. virginicus were profiled using sequences which amplified theV3-V4 sub-regions of 16S rRNA gene. Sequences were analyzed using a taxonomic analysis tool, Quantitative Insights Into Microbial Ecology (OIIME 2), in order to infer the effect of chitosan on the composition of the bacterial fauna in the hindgut. The richness and evenness results indicated that the most diversity was observed in the bacteria from termites not being exposed (UNX) to treatment compared to other treatment groups. On the other hand, the lowest richness and evenness were determined for chitosan-treated wood (CTE) and starved termites (STV). Of 28 bacterial phyla, Bacteroidetes, Firmicutes, Elusimicrobia, and Proteobacteria were the most dominant phyla across all the treatment groups. The results suggest that chitosan treated wood led to the microbial community shifts in R. virginicus. In addition, lack of a nutrition source and other changes in termite’s food affect the termite hindgut bacterial diversity.
|
Page generated in 0.0551 seconds