• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Modeling of an Advanced Wastewater Treatment Plant

Rathore, Komal 11 June 2018 (has links)
Advanced wastewater treatment plants have complex biological kinetics, time variant influent rates and long processing times. The modeling and operation control of wastewater treatment plant gets complicated due to these characteristics. However, a robust operational system for a wastewater treatment plant is necessary to increase the efficiency of the plant, reduce energy cost and achieve environmental discharge limits. These discharge limits are set by the National Pollutant Discharge Elimination System (NPDES) for municipal and industrial wastewater treatment plants to limit the amount of nutrients being discharged into the aquatic systems. This document summarizes the research to develop a supervisory operational and control system for the Valrico Advanced Wastewater Treatment Plant (AWWTP) in the Hillsborough County, Florida. The Valrico AWWTP uses biological treatment process and has four oxidation ditches with extended aeration where simultaneous nitrification and denitrification (SND) takes place. Each oxidation ditch has its own anaerobic basin where in the absence of oxygen, the growth of microorganisms is controlled and which in return also helps in biological phosphorus removal. The principle objective of this research was to develop a working model for the Valrico AWWTP using BioWin which mimics the current performance of the plant, predicts the future effluent behavior and allows the operators to take control actions based on the effluent results to maintain the discharge permit limits. Influent and experimental data from online and offline sources were used to tune the BioWin model for the Valrico Plant. The validation and optimization of the BioWin model with plant data was done by running a series of simulations and carrying out sensitivity analysis on the model which also allowed the development of operation policies and control strategies. The control strategies were developed for the key variables such as aeration requirements in the oxidation ditch, recycle rates and wastage flow rates. A controller that manipulates the wasting flow rate based on the amount of mixed liquor suspended solids (MLSS) was incorporated in the model. The objective of this controller was to retain about 4500-4600 mg/L of MLSS in the oxidation ditch as it is maintained by the Valrico Plant. The Valrico AWWTP recycles around 80% of their effluent and hence, the split ratios were adjusted accordingly in the model to recycle the desired amount. The effluent concentrations from the BioWin model for the parameters such as Total Nitrogen (TN), Ammonia, Nitrate, Nitrite, Total Kjeldahl Nitrogen (TKN) complied with the discharge limits which is usually less than 2 mg/L for all the parameters.
2

Investigation of potato starch and sonicated return activated sludge as alternative carbon sources for biological nitrogen removal.

Kuncoro, Gideon Bani January 2008 (has links)
High nitrogen discharge from the municipal wastewater is a major concern for the South Australian Government, primarily due to negative impacts on the marine environment. Therefore, under the South Australian Environmental Improvement Program, (SA EIP), all metropolitan wastewater treatment plants have been reconfigured to achieve enhanced nitrogen removal. Secondary treatment (denitrification process) at the metropolitan wastewater treatment plants must be optimised to meet the discharge guideline of 10 mg/L total nitrogen. However, secondary treatment at some plants is carbon limited (low C/N ratio), and external carbon supplementation is required to meet this discharge guideline. Molasses provides the current external carbon source at two plants. It is relatively inexpensive, but other carbon sources, particularly industrial waste streams, may be more attractive, due to the potentially lower material cost, as it is practically free, and environmentally friendly. Potato starch and sonicated return activated sludge (RAS) were considered. In this study, the bioavailability of the soluble carbon in potato starch and ultrasound treated RAS were assessed. The associated objective was to investigate the potential of both carbon sources as an external carbon donor for the denitrification zone of wastewater treatment plants to economically improve biological nitrogen removal. The economic analysis was performed using mainly United States dollars and the fixed capital investments and total capital costs were converted to Australian dollars. This was due to the United States dollars currency quotes obtained for the materials and unit operations required. SCOD from the three sources was quantified and preliminary results were presented. Molasses provided the highest SCOD release of 1.1285 x 10⁶ mg-SCOD/L, sonicated RAS produced 5.6 to 68.4 times the SCOD release of the untreated RAS (35.6 mg-SCOD/L) depending on the ultrasound intensity and treatment time, while the highest soluble carbon release obtained using potato starch was 809 mg-SCOD/L (using 20.9 g/100 mL potato starch concentration). Based on the experimental SCOD results, batch denitrification tests using the proposed carbon sources were carried out. The nitrogen removal efficiency at low dose (12.48 mg-SCOD/L) using molasses, potato starch and sonicated RAS were 77.54%, 57.24%, and 72.76% respectively, whilst at high dose (124.80 mg-SCOD/L) were 94.04%, 66.32%, and 92.10% correspondingly. In similar order of the proposed carbon sources, the nitrate removal rates for the first phase denitrification with low dose were 1.44, 1.16, and 1.18 mg-NO₃ − /h respectively, whilst the nitrate removal rate of the first phase denitrification with high dose improved to 2.01, 1.26, and 1.96 mg-NO₃ −/h correspondingly. From the denitrification test results, molasses proved to be the optimal carbon source in terms of nitrate removal. However sonicated RAS possesses similar denitrification performance and may be a suitable alternative. An economic analysis for sonicated RAS Option 2 confirmed it as the most viable substitute. The time to recover the initial investment (payback period) is approximately 6.5 years and the breakeven point is approximately 8 years. Both denitrification tests and economic analyses demonstrate that sonicated RAS may be a viable and attractive substitute for the molasses. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337059 / Thesis (M.Eng.Sc.) - University of Adelaide, School of Chemical Engineering, 2008
3

Investigation of potato starch and sonicated return activated sludge as alternative carbon sources for biological nitrogen removal.

Kuncoro, Gideon Bani January 2008 (has links)
High nitrogen discharge from the municipal wastewater is a major concern for the South Australian Government, primarily due to negative impacts on the marine environment. Therefore, under the South Australian Environmental Improvement Program, (SA EIP), all metropolitan wastewater treatment plants have been reconfigured to achieve enhanced nitrogen removal. Secondary treatment (denitrification process) at the metropolitan wastewater treatment plants must be optimised to meet the discharge guideline of 10 mg/L total nitrogen. However, secondary treatment at some plants is carbon limited (low C/N ratio), and external carbon supplementation is required to meet this discharge guideline. Molasses provides the current external carbon source at two plants. It is relatively inexpensive, but other carbon sources, particularly industrial waste streams, may be more attractive, due to the potentially lower material cost, as it is practically free, and environmentally friendly. Potato starch and sonicated return activated sludge (RAS) were considered. In this study, the bioavailability of the soluble carbon in potato starch and ultrasound treated RAS were assessed. The associated objective was to investigate the potential of both carbon sources as an external carbon donor for the denitrification zone of wastewater treatment plants to economically improve biological nitrogen removal. The economic analysis was performed using mainly United States dollars and the fixed capital investments and total capital costs were converted to Australian dollars. This was due to the United States dollars currency quotes obtained for the materials and unit operations required. SCOD from the three sources was quantified and preliminary results were presented. Molasses provided the highest SCOD release of 1.1285 x 10⁶ mg-SCOD/L, sonicated RAS produced 5.6 to 68.4 times the SCOD release of the untreated RAS (35.6 mg-SCOD/L) depending on the ultrasound intensity and treatment time, while the highest soluble carbon release obtained using potato starch was 809 mg-SCOD/L (using 20.9 g/100 mL potato starch concentration). Based on the experimental SCOD results, batch denitrification tests using the proposed carbon sources were carried out. The nitrogen removal efficiency at low dose (12.48 mg-SCOD/L) using molasses, potato starch and sonicated RAS were 77.54%, 57.24%, and 72.76% respectively, whilst at high dose (124.80 mg-SCOD/L) were 94.04%, 66.32%, and 92.10% correspondingly. In similar order of the proposed carbon sources, the nitrate removal rates for the first phase denitrification with low dose were 1.44, 1.16, and 1.18 mg-NO₃ − /h respectively, whilst the nitrate removal rate of the first phase denitrification with high dose improved to 2.01, 1.26, and 1.96 mg-NO₃ −/h correspondingly. From the denitrification test results, molasses proved to be the optimal carbon source in terms of nitrate removal. However sonicated RAS possesses similar denitrification performance and may be a suitable alternative. An economic analysis for sonicated RAS Option 2 confirmed it as the most viable substitute. The time to recover the initial investment (payback period) is approximately 6.5 years and the breakeven point is approximately 8 years. Both denitrification tests and economic analyses demonstrate that sonicated RAS may be a viable and attractive substitute for the molasses. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337059 / Thesis (M.Eng.Sc.) - University of Adelaide, School of Chemical Engineering, 2008

Page generated in 0.0489 seconds