• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Charakterisierung der Modenverwirbelungskammer der TU Dresden und Untersuchung von Verfahren zur Bestimmung der unabhängigen Rührerstellungen

Pfennig, Stephan 18 December 2014 (has links)
Die Elektromagnetische Verträglichkeit (EMV) betrachtet die Fähigkeit eines elektrischen Gerätes, in seiner elektromagnetischen Umgebung störungsfrei zu funktionieren, ohne diese dabei unzulässig zu stören. Zur Prüfung der Elektromagnetischen Verträglichkeit werden verschiedene Messumgebungen verwendet. Die Messung der strahlungsgebundenen Störfestigkeit und Störaussendung kann zum Beispiel in einer Modenverwirbelungskammer (MVK) erfolgen. Bei der Störfestigkeitsmessung wird der Prüfling einem externen Prüffeld ausgesetzt und untersucht, ob dieser die definierten Kriterien für einen störungsfreien Betrieb erfüllt. Für das Prüffeld muss vor der Messung nachgewiesen werden, dass die Anforderungen an dessen Homogenität eingehalten werden. Einen entscheidenden Einfluss auf die Homogenität des Prüffeldes hat der sogenannte Rührer. Bei einer MVK handelt es sich prinzipiell um einen Hohlraumresonator, in den ein mechanischer Rührer, d.h. ein elektrisch großer, drehbarer Streukörper integriert wird. Durch die Drehung des Rührers verändert sich die Feldverteilung in der MVK, was auch als Verwirbelung bezeichnet wird. Prinzipiell ergibt sich für jede Stellung des Rührers ein inhomogenes Feld mit lokalen Minima und Maxima. Ein Ziel bei der Verwendung von Modenverwirbelungskammern ist es, mit Hilfe geeigneter Verfahren Rührerstellungen zu finden, deren Feldverteilungen in Überlagerung ein möglichst homogenes Prüffeld erzeugen. Zum Lehrstuhl für Theoretische Elektrotechnik und Elektromagnetische Verträglichkeit der Technischen Universität Dresden gehört seit 2010 eine Modenverwirbelungskammer. Die Charakterisierung dieser MVK sowie eine weiterführende Untersuchung zur Wahl der Rührerstellungen bilden die Schwerpunkte der vorliegenden Arbeit. / In 2010 the Chair of Electromagnetic Theory and Compatibility of Technical University Dresden could extend its laboratories by a reverberation chamber with the dimensions 5.3 m, 3.7m and 3.0 m. Since then, a detailed characterisation of the chamber as well as further investigations have been the main emphasis of the authors research. The submitted doctoral thesis presents the obtained results. With the design, the fundamentals of operation and further characterisation of the reverberation chamber, given in Chapter 1 and 2, it aims to give an introduction and better understanding of reverberation chambers. On this basis, the authors research focused on methods for determining the independent stirrer positions in reverberations chambers. The results of the investigations are presented and summarised in chapter 3. One scope of Electromagnetic Compatibility are radiated immunity measurements. Besides the GTEM cell and the anechoic chamber the reverberation chamber gains in importance as an alternative measurement environment. A reverberation chamber is a shielded room with reflecting walls and one or more integrated mechanical stirrers. By rotating the stirrer the spatial boundary conditions for the electromagnetic field quantities are altered. The resulting change of the spatial field distribution depends on the location within the chamber and the geometry of the stirrer. Each stirrer position yields an inhomogeneous field distribution created by interfering waves. A general aim is to find a set of stirrer positions, whose superimposed field distributions create a more uniform test field. In practice, the given requirements for the homogeneity of the test field shall, with regards to an optimisation of measurement time, be realized with a minimum number of stirrer positions. In this context the term ’independent stirrer positions’ was established and describes stirrer positions, whose field distributions are linearly uncorrelated and therefore assumed to be practical for creating a more homogeneous test field using only a minimal number of stirrer positions. A general method for determining the number of independent stirrer positions in reverberation chambers is presented. The method uses a certain number of measurement positions in a defined test volume in order to characterize the spatial field distribution inside the chamber. Using the Pearson correlation coefficient the field distributions of the stirrer positions are tested for linear correlation and pairs of independent stirrer positions are determined. On this basis, cliques of pairwise independent stirrer positions are identified using appropriate algorithms. It is shown that the general method yields detailed information about the number and distribution of the independent stirrer positions and is therefore particularly suitable to evaluate other methods. Finally, the standard method according to IEC 61000-4-21 as well as selected alternative methods, that have been proposed in the past, are evaluated and compared based on the results of the general method.
2

Analysis of RISE's VIRC for Automotive EMC Immunity Testing

Lundberg, Andreas January 2021 (has links)
RCs (Reverberation Chambers) has historically been used mainly for aerospace and military purposes in EMC (Electromagnetic Compatibility) testing, but the interest also seems to increase in the automotive industry (the development of an international standard for vehicles is in progress). The vehicles of the future will most likely be electrified, wirelessly connected and autonomous, i.e., more control units, more communication systems, and more sensors, will be implemented in the vehicles requiring increased robustness against all possible electromagnetic interferences. EMC testing in an RC is a step in the direction of ensuring this robustness for the future vehicle platforms. Compared to a traditional EMC test method in a fully or semi-AC (Anechoic Chamber), testing in an RC has the advantage that the electromagnetic field will be isotropic, randomly polarized and homogeneous in a statistical sense, i.e., the exposed object will be surrounded by electromagnetic energy from all directions. It can be considered relatively expensive to build a brand new RC with motorized stirrers and associated measurement instrumentation, instead it would be desirable to perform immunity tests in a more cost-effective conductive fabric tent. The great advantage is the flexibility, the tent can be set up almost anywhere, even in already existing semi-ACs, such set-up is referred to as VIRC (Vibrating Intrinsic Reverberation Chamber). This thesis aims to develop a new test method in a VIRC environment. In order to achieve good RC conditions, the electromagnetic field must be statistically Rayleigh distributed. Furthermore, it is of great importance to avoid LoS (Line of Sight) between the antenna and the test object, and to achieve good stirring in the tent. Provided this can be achieved, there are still some challenges by testing in a tent. For example, the classical dwell time of two seconds for immunity testing in EMC is not possible to achieve in a VIRC environment. The validation in this thesis shows that the dwell time or the total exposure time in the tent might be enough to trigger possible malfunctions in today's modern high-speed communication vehicles. Furthermore, it is showed, testing in a VIRC gives good field uniformity and repeatability, and can trigger malfunctions that are not triggered in traditional EMC testing in semi-AC, i.e., ALSE (Absorber-Lined Shielded Enclosure) testing.
3

Development of a Novel Method for Automotive On-board Transmitter EMC Immunity Testing / Utveckling av en Immunitetsmetod för Elektromagnetisk Kompatibilitetstestning vid Simulering av Strålningskälla i Fordon

Holm, Ludvig January 2023 (has links)
As the automotive industry advances through technology integration, components are designed to operate at increasingly higher frequencies. Consequently, there will be an increasing demand for automotive electromagnetic compatibility (EMC) testing. Testing and certification institutes, such as RISE Research Institutes of Sweden AB, thus face an urgent need to develop innovative solutions that can effectively address this growing demand. This master thesis work concerns one EMC test method in particular - the On-board Transmitter (OBT). This is a test which mainly serves to test the immunity of vehicles to electromagnetic disturbances originating from hand-held devices. The conventional test is performed in an anechoic chamber and the methodology requires a substantial amount of time. The intent with this work is thus to evaluate the potential of a novel OBT method where the concept of a reverberating chamber is applied inside the vehicle compartment. Initially, the conventional method was examined from two mock-ups of idealized cases, and it was observed that the electromagnetic field in the near-field region of the transmitter is highly erratic. It was also concluded that the test setup is particularly sensitive to the polarization of the transmitter. With these findings in mind, the accuracy of the conventional method was deemed questionable. Evaluation of the proposed Reverberating On-board Transmitter (ROBT) method proved that the electromagnetic environment inside the vehicle did not resemble a perfect reverberation chamber. Which was expected as the absorbing material such as seating and upholstery likely prevents a field distribution similar to that in a reverberation chamber. Still, the intent of the project was to find a test method superior to the conventional method and it can be stated that the ROBT method is an adequate option due to its capacity to expose the electronics to isotropic radiation. This was found from two measures which this thesis introduces: expected isotropicity eiso, a relative measure of the electric field components and DDoF, a quantification of the spatial distribution inside a reverberation chamber. / EMC VERifiering av Autonoma fordon i modväxlad kammare (EMCVERA)

Page generated in 0.1131 seconds