• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Factors affecting reversible shape-memory

Friend, C. M. January 1985 (has links)
In the last twenty years Reversible Shape-Memory (RSM) alloys have become the source of considerable technological interest as a result of their ability to generate spontaneous and reversible changes of shape on thermal cycling. This has led to the development of a range of reversible shape-memory devices for thermostatic sensing applications. In these devices the alloy is subjected to several thousand shape-memory cycles and the stability of the reversible shape-memory is therefore an important alloy property. Data on the effect of shape-memory cycling on the long-term stability of the reversible shape-memory, however, is extremely limited. The present work, conducted to fill this gap, has shown that there is an inherent instability in the reversible shape-memory, with changes in the operating temperatures and cumulative reductions in the maximum shape-strain output of actuators on long-term thermal cycling under conditions simulating real devices. Extensive investigation has shown that these instabilities result from a number of sources, ageing of the shape-memory martensites and most importantly from morphological disruptions in the "trained" martensites caused by two-stage stress-induced transformation and due to the build-up of transformation-induced dislocation debris. This shape-strain degradation has also been successfully modelled by means of a simple two-stage stress-induced martensitic transformation model.

Page generated in 0.0842 seconds