• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 7
  • 7
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Particle image velocimetry studies of low reynolds number flow in branching flow networks /

Kwak, Younghoon. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2004. / Typescript (photocopy). Includes bibliographical references (leaves 85-88). Also available via the World Wide Web.
2

Multidimensional viscous flows at superorbital speeds

Silvester, Todd Unknown Date (has links)
A combined experimental and numerical study of multidimensional viscous flows at speeds exceeding 8 km/s is reported. Experiments were performed in the X3 superorbital expansion tube with air and nitrogen test flows at a Mach number and total enthalpy of 10 and 40 MJ/kg, respectively. Laminar skin friction, heat flux and pressure measurements were obtained at regular intervals along one wall of a rectangular duct. The spatial resolution of the transducers was chosen to capture the multidimensional flow phenomena within the duct. Quasi-steady flow periods were established along the entire length of the duct in the test times offered by the expansion tube. Direct skin friction measurements were accomplished through the use of ‘in house’ acceleration compensated transducers. The successful operation of these skin friction transducers in a high performance expansion tube was demonstrated. Furthermore, the systematic uncertainty in measured shear stress was significantly reduced with the development of a new pressure calibration technique. For the conditions tested, Reynolds analogy was shown to be valid to within experimental uncertainty. The experimental data was in excellent agreement with numerical estimates. Three-dimensional numerical simulations of the diverging duct revealed that the flowfield structure in the vicinity of the corners differs from that of an unbounded corner or a constant area duct. Real gas effects other than those present in the residual nonequilibrium levels of freestream dissociation were negligible for the conditions tested. A computational study of two waverider configurations recently tested in the X3 superorbital expansion tube was conducted to assist in the interpretation of past results. The off-design aerodynamic performance was also analyzed and showed that blunting the leading edges dramatically degraded the performance by increasing drag and decreasing lift for the conditions considered.
3

Multidimensional viscous flows at superorbital speeds

Silvester, Todd Unknown Date (has links)
A combined experimental and numerical study of multidimensional viscous flows at speeds exceeding 8 km/s is reported. Experiments were performed in the X3 superorbital expansion tube with air and nitrogen test flows at a Mach number and total enthalpy of 10 and 40 MJ/kg, respectively. Laminar skin friction, heat flux and pressure measurements were obtained at regular intervals along one wall of a rectangular duct. The spatial resolution of the transducers was chosen to capture the multidimensional flow phenomena within the duct. Quasi-steady flow periods were established along the entire length of the duct in the test times offered by the expansion tube. Direct skin friction measurements were accomplished through the use of ‘in house’ acceleration compensated transducers. The successful operation of these skin friction transducers in a high performance expansion tube was demonstrated. Furthermore, the systematic uncertainty in measured shear stress was significantly reduced with the development of a new pressure calibration technique. For the conditions tested, Reynolds analogy was shown to be valid to within experimental uncertainty. The experimental data was in excellent agreement with numerical estimates. Three-dimensional numerical simulations of the diverging duct revealed that the flowfield structure in the vicinity of the corners differs from that of an unbounded corner or a constant area duct. Real gas effects other than those present in the residual nonequilibrium levels of freestream dissociation were negligible for the conditions tested. A computational study of two waverider configurations recently tested in the X3 superorbital expansion tube was conducted to assist in the interpretation of past results. The off-design aerodynamic performance was also analyzed and showed that blunting the leading edges dramatically degraded the performance by increasing drag and decreasing lift for the conditions considered.
4

Multidimensional viscous flows at superorbital speeds

Silvester, Todd Unknown Date (has links)
A combined experimental and numerical study of multidimensional viscous flows at speeds exceeding 8 km/s is reported. Experiments were performed in the X3 superorbital expansion tube with air and nitrogen test flows at a Mach number and total enthalpy of 10 and 40 MJ/kg, respectively. Laminar skin friction, heat flux and pressure measurements were obtained at regular intervals along one wall of a rectangular duct. The spatial resolution of the transducers was chosen to capture the multidimensional flow phenomena within the duct. Quasi-steady flow periods were established along the entire length of the duct in the test times offered by the expansion tube. Direct skin friction measurements were accomplished through the use of ‘in house’ acceleration compensated transducers. The successful operation of these skin friction transducers in a high performance expansion tube was demonstrated. Furthermore, the systematic uncertainty in measured shear stress was significantly reduced with the development of a new pressure calibration technique. For the conditions tested, Reynolds analogy was shown to be valid to within experimental uncertainty. The experimental data was in excellent agreement with numerical estimates. Three-dimensional numerical simulations of the diverging duct revealed that the flowfield structure in the vicinity of the corners differs from that of an unbounded corner or a constant area duct. Real gas effects other than those present in the residual nonequilibrium levels of freestream dissociation were negligible for the conditions tested. A computational study of two waverider configurations recently tested in the X3 superorbital expansion tube was conducted to assist in the interpretation of past results. The off-design aerodynamic performance was also analyzed and showed that blunting the leading edges dramatically degraded the performance by increasing drag and decreasing lift for the conditions considered.
5

Multidimensional viscous flows at superorbital speeds

Silvester, Todd Unknown Date (has links)
A combined experimental and numerical study of multidimensional viscous flows at speeds exceeding 8 km/s is reported. Experiments were performed in the X3 superorbital expansion tube with air and nitrogen test flows at a Mach number and total enthalpy of 10 and 40 MJ/kg, respectively. Laminar skin friction, heat flux and pressure measurements were obtained at regular intervals along one wall of a rectangular duct. The spatial resolution of the transducers was chosen to capture the multidimensional flow phenomena within the duct. Quasi-steady flow periods were established along the entire length of the duct in the test times offered by the expansion tube. Direct skin friction measurements were accomplished through the use of ‘in house’ acceleration compensated transducers. The successful operation of these skin friction transducers in a high performance expansion tube was demonstrated. Furthermore, the systematic uncertainty in measured shear stress was significantly reduced with the development of a new pressure calibration technique. For the conditions tested, Reynolds analogy was shown to be valid to within experimental uncertainty. The experimental data was in excellent agreement with numerical estimates. Three-dimensional numerical simulations of the diverging duct revealed that the flowfield structure in the vicinity of the corners differs from that of an unbounded corner or a constant area duct. Real gas effects other than those present in the residual nonequilibrium levels of freestream dissociation were negligible for the conditions tested. A computational study of two waverider configurations recently tested in the X3 superorbital expansion tube was conducted to assist in the interpretation of past results. The off-design aerodynamic performance was also analyzed and showed that blunting the leading edges dramatically degraded the performance by increasing drag and decreasing lift for the conditions considered.
6

Numerical simulations of supersonic turbulent wall-bounded flows

Ben Nasr, Ouissem 16 May 2012 (has links) (PDF)
This work deals with spatially-evolving supersonic turbulent boundary layers over adiabatic and cold walls at M∞ = 2 and up to Re0 ≈ 2600 using 3 different SGS models. The numerical methodology is based on high-order split-centered scheme to discretize the convective fluxes of the Navier-Stokes equations . For the adiabatic case, it is demonstrated that all SGS models require a comparable minimum grid-refinement in order to capture accurately the near-wall-turbulence. Overall, the models exhibit correct behavior when predictiong the dynamic properties, but show different performances for the temperature distribution in the near-wall region. For the isothermal case, it is found that the compressibility effects are not enhanced due to the wall cooling. As expected, the total temperature fluctuations are not negligible in the near-wall region. The study shows that the anti-correlation linking both velocity and temperature fields, derived from the Morkovin's hypothesis, is not satisfied.
7

Numerical simulations of supersonic turbulent wall-bounded flows / Etude numérique des transferts pariétaux en écoulements turbulents supersoniques

Ben Nasr, Ouissem 16 May 2012 (has links)
Cette thèse traite des transferts pariétaux dans les écoulements turbulents supersoniques via la simulation des grandes échelles turbulentes. Des couches limites adiabatique et refroidie évoluant à Mach M∞ = 2 et à Reynolds Re0 ≈ 2600 sont considérées. Les simulations numériques utilisent un schéma split-centered d’ordre élevé pour la discrétisation des flux convectifs. Les résultats obtenus sont comparés aux simulations numériques directes (DNS) disponibles dans la littérature. Plusieurs modèles de sous-maille ont été testés et validés. Il a été montré que ces modèles exigent un minimum de raffinement de maillage afin de capturer les structures les plus énergétiques présentes en proche paroi. Les modèles montrent des performances différentes pour la distribution de la température à la paroi. Pour le cas d’une paroi refroidie, les fluctuations de température totale ne sont pas négligeables dans la région proche-paroi. Et l’anticorrélation (u’, T’) se basant sur l’hypothèse de Morkovin n’est pas satisfaite. / This work deals with spatially-evolving supersonic turbulent boundary layers over adiabatic and cold walls at M∞ = 2 and up to Re0 ≈ 2600 using 3 different SGS models. The numerical methodology is based on high-order split-centered scheme to discretize the convective fluxes of the Navier-Stokes equations . For the adiabatic case, it is demonstrated that all SGS models require a comparable minimum grid-refinement in order to capture accurately the near-wall-turbulence. Overall, the models exhibit correct behavior when predictiong the dynamic properties, but show different performances for the temperature distribution in the near-wall region. For the isothermal case, it is found that the compressibility effects are not enhanced due to the wall cooling. As expected, the total temperature fluctuations are not negligible in the near-wall region. The study shows that the anti-correlation linking both velocity and temperature fields, derived from the Morkovin's hypothesis, is not satisfied.

Page generated in 0.048 seconds