• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 81
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22
  • 16
  • 13
  • 5
  • 4
  • 4
  • 2
  • Tagged with
  • 333
  • 64
  • 51
  • 42
  • 36
  • 32
  • 32
  • 32
  • 31
  • 30
  • 27
  • 22
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Elektrostatische Kraftübertragung und Kontrolle der Chemokinesis im Flagellenmotor von Sinorhizobium meliloti

Attmannspacher, Ursula. January 1900 (has links) (PDF)
Regensburg, Univ., Diss., 2004. / Computerdatei im Fernzugriff.
22

Changes induced in certain strains of the root nodule bacteria of the Leguminoseae by repeated passage through the host plants

Allen, O. N. January 1930 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1930. / Typescript. Includes: The effectiveness of rhizobia as influenced by passage through the host plant, [by] O.N. Allen and I.L. Baldwin, Agricultural experiment station of the University of Wisconsin, Madison. Research bulletin 106. January, 1931 (56 p.). Includes bibliographical references ([9] leaves following numbered leaves).
23

NMR-spektroskopische Charakterisierung des Responsregulators CheY2 aus Sinorhizobium meliloti

Riepl, Hubert. January 1900 (has links) (PDF)
Regensburg, Universiẗat, Diss., 2003. / Erscheinungsjahr an der Haupttitelstelle: 2002.
24

Elektrostatische Kraftübertragung und Kontrolle der Chemokinesis im Flagellenmotor von Sinorhizobium meliloti

Attmannspacher, Ursula. January 1900 (has links) (PDF)
Regensburg, Universiẗat, Diss., 2004.
25

Molecular biology and biochemistry of mimosine degradation by rhizobium

Fox, Paul M. January 2002 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2002. / Includes bibliographical references (leaves 106-116). Also available on microfiche.
26

Aspects du comportement chimiotactique chez Rhizobium meliloti.

Burg, Danielle, Unknown Date (has links)
Th. 3e cycle--Amélioration des prod. vég. et microbiennes--Lille 1, 1980. N°: 861. / Rés. de la th.
27

Studies concerning the correlation of nodulation and nitrogen-fixation by various strains of Rhizobium leguminosarum

France, Ralph Lyle 01 January 1929 (has links) (PDF)
No description available.
28

Pyrimidine Metabolism in Rhizobium: Physiological Aspects of Pyrimidine Salvage

Ibrahim, Mohamed M. 12 1900 (has links)
The objective of this research was to study the pyrimidine salvage pathways of Rhizobium. Three approaches were used to define the pyrimidine salvage pathways operative in two species of Rhizobium, R. meliloti and R. leguminosarum . The first approach was to ascertain the pyrimidine bases and nucleosides that could satisfy the pyrimidine requirement of pyrimidine auxotrophs. Uracil, cytosine, uridine or cytidine all satisfied the absolute pyrimidine requirement. The second approach was to select for mutants resistant to 5-fluoropyrimidine analogues which block known steps in the interconversion of the pyrimidine bases and nucleosides. Mutants resistant to 5-fluorouracil lacked the enzyme uracil phosphoribosyltransferase (upp ) and could no longer use uracil to satisfy their pyrimidine requirement. Mutants resistant to 5-fluorocytosine, while remaining sensitive to 5- fluorouracil, lacked cytosine deaminase (cod) and thus could no longer use cytosine to satisfy their pyrimidine auxotrophy. The third approach used a reversed phase HPLC column to identify the products that accumulated when cytidine, uridine or cytosine was incubated with cell extracts of wild type and analogue resistant mutants of Rhizobium. When cytidine was incubated with cell extracts of Rhizobium wild type, uridine, uracil and cytosine were produced. This Indicated that Rhizobium had an active cytidine deaminase (cdd) and either uridine phosphorylase or uridine hydrolase. By dialyzing the extract and reincubating it with cytidine, uridine and uracil still appeared. This proved that it was a hydrolase ( nuh ) rather than a phosphorylase that degraded the nucleoside. Thus, Rhizobium was found to contain an active cytidine deaminase and cytosine deaminase with no uridine phosphorylase present. The nucleoside hydrolase was active with cytidine, uridine and to a far lesser extent with purines, adenosine and inosine. When high concentrations of cytidine were added to mutants devoid of hydrolase, cytosine was produced from cytidine - 5-monophosphate by the sequential action of uridine ( cytidine ) kinase and nucleoside monophosphate glycosylase. Both ft meliloti and ft leguminosarum had identical salvage pathways.
29

Host-specific Nod factor requirements for nodulation of Lotus species by Mesorhizobium loti

Rodpothong, Patsarin, n/a January 2008 (has links)
Mesorhizobium loti possesses a symbiosis island (ICEMlSym[R7A]) that confers upon the bacterium the ability to form a symbiotic association with legumes of the genus Lotus. Nodulation (nod, nol and noe) genes located on the ICEMlSym[R7A] encode enzymes that are responsible for the production of a species-specific signaling molecule, named Nod factor. Perception of Nod factors by plant receptors triggers several plant responses and facilitates bacterial invasion, leading to the formation of root nodules. The studies in this thesis aimed to examine the impact of various structural components of the M. loti Nod factor on host specificity and recognition within Lotus species. The minimal gene requirement for eliciting nodule development on Lotus plants was also determined. The M. loti strain R7A Nod factor has a backbone of five N-acetyl-D-glucosamine (GlcNAc) residues. The non-reducing terminal GlcNAc residue carries an acyl chain of either a vaccenic acid (C[18:1]) or palmitic acid (C[16:0]), a carbamoyl group and a methyl group, while an acetylfucose is present at the reducing terminus. Analysis of loss-of-function [Delta]nodZ and [Delta]nolL mutants showed that the acetylfucose at the reducing terminus was required for efficient nodulation of Lotus species, especially during the initiation of infection threads and for induction of symbiotic gene, NIN. Upon inoculation with R7A[Delta]nodZ, nodulation of Lotus corniculatus and L. filicaulis was significantly delayed and reduced, while only a delay in the onset of nodulation was observed with L. japonicus. Interestingly, nodulation of L. burttii induced by R7A[Delta]nodZ was as efficient as that induced by R7A. Hence, the absolute requirement for the acetylfucose during nodulation was host-dependent. In planta complementation and domain swap experiments using transgenic L. japonicus nfr1 and nfr5 mutants were employed to investigate the role of the reducing terminal acetylfucose in the perception of Nod factor. Nodulation of complemented L. japonicus nfr1 and nfr5 mutants inoculated with R7A[Delta]nodZ was poor, whereas similar plants inoculated with R7A nodulated well. This suggests that the in planta complementation was inefficient and as a result accentuated the effect of the acetylfucose on the Nod factor recognition. The responses of recombinant inbred lines (RILs) derived from a cross between L. filicaulis and L. japonicus to inoculation with strain R7A[Delta]nodZ suggested that at least two genetic loci on chromosome 4, in addition to the Nfr1 and Nfr5 genes, contribute to Nod factor perception and in particular the host-specific recognition of the acetylfucose, This suggests the involvement of multiple receptors or a receptor with multiple components in the perception of Nod factors. A gain-of-function study demonstrated that the presence of nodulation genes alone in nonsymbiotic mesorhizobia was sufficient to induce nodulation and bacteroid formation on Lotus plants, indicating that no other ICEMlSym[R7A] genes were required for infection thread formation or bacterial release. Nodulation assays of four Lotus species indicated host-specific requirements for nodulation genes. The presence of the nodA, nodC, nodD1, nodD2, nodZ, noeL and nolK genes was sufficient to permit nodulation of L. burttii, but was insufficient to induce nodulation of L. japonicus, L. corniculatus and L. filicaulis. The importance of the carbamoyl and methyl groups, and the influence of Nod factor concentration during nodulation were also implicated in this study. A model for the Nod factor perception in Lotus was proposed.
30

Population genetic structure and ecology of Rhizobium leguminosarum

Strain, Steven R. 12 October 1993 (has links)
Graduation date: 1994

Page generated in 0.0414 seconds