• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High-pressure synthesis of the 4d and 5d transition-metal oxides with the perovskite and the perovskite-related structure and their physical properties

Cheng, Jinguang 30 September 2010 (has links)
A Walker-type multianvil high-pressure facility is capable of high-pressure syntheses and measurements beyond 10 GPa and has been utilized in my research to synthesize the 4d Ruthenium and Rhodium and the 5d Iridium oxides with the perovskite-related structures. Under high-pressure and high-temperature conditions, these families of oxides can be enlarged to a great extent so that enables us not only to address the long-standing problem about ferromagnetism in the perovskite ruthenates but also explore new phenomena associated with the structural and electronic properties in the iridates and rhodates. In the perovskite ruthenates ARuO₃ (A= Ca, Sr, and Ba), a systematic study of the variations of the ferromagnetic transition temperature T[subscript c] and the critical isothermal magnetization as a function of the average A-site cation size and the size variance as well as external high pressures reveals explicitly the crucial role of the local lattice strain and disorder on T[subscript c] and the nature of the localized-electron ferromagnetism. However, such a steric effect is dominated by the electronic effect in another perovskite ruthenate PbRuO₃, which is a paramagnetic metal down to 1.8 K and undergoes a first-order structural transition to a low-temperature Imma phase at Tt [almost equal to] 90 K. Bandwidth broadening due to orbital hybridization between Pb-6s and Ru-4d plays an important role in suppressing the ferromagnetism in the Sr1-zPbzRuO₃ system. The high-pressure sequence of the 9R-BaIrO₃ was explored and three more polytypes, i.e. 5H, 6H and 3C, were identified under 10 GPa. With increasing fraction of the corner- to face-sharing IrO₆/₂ octahedra, the ground states of BaIrO₃ evolve from a ferromagnetic insulator with T[subscript c] [almost equal to] 180 K in the 9R phase to a ferromagnetic metal with T[subscript c] [almost equal to] 50 K in the 5H phase, and finally to an exchange-enhanced paramagnetic metal near a quantum critical point in the 6H phase. In addition to the perovskite SrRhO₃, a new 6H polytype was synthesized for the first time under high pressure and a pressure-temperature phase diagram was given for the 6H-perovskite transformation. Restoration of the Curie-Weiss behavior in the high-temperature magnetic susceptibility [chi](T) of the perovskite SrRhO₃ resolves the puzzle about unusual dependence of [chi]⁻¹ [symbol] T² reported earlier and highlights the importance of spin-orbit coupling in the 4d and 5d transition-metal oxides. / text
2

Synthesis and investigation of frustrated Honeycomb lattice iridates and rhodates

Manni, Soham 27 June 2014 (has links)
No description available.

Page generated in 0.0234 seconds