Spelling suggestions: "subject:"mice distribution"" "subject:"ice distribution""
1 |
HELPING COGNITIVE RADIO IN THE SEARCH FOR FREE SPACEGonzales Fuentes, Lee January 2012 (has links)
Spectrum sensing is an essential pre-processing step of cognitive radio technology for dynamic radio spectrum management. One of the main functions of Cognitive radios is to detect the unused spectrum and share it without harmful interference with other users. The detection of signal components present within a determined frequency band is an important requirement of any sensing technique. Most methods are restricted to the detection of the spectral lines. However, these methods may not comply with the needs imposed by practical applications. This master thesis work presents a novel method to detect significant spectral components in measured non-flat spectra by classifying them in two groups: signal and noise frequency lines. The algorithm based on Fisher’s discriminant analysis, aside from the detection of spectral lines, estimates the magnitude of the spectral lines and provides a measure of the quality of classification to determine if a spectral line was incorrectly classified. Furthermore, the frequency lines with higher probability of misclassification are regrouped and the validation process recomputed, which results in lower probabilities of misclassification. The proposed automatic detection algorithm requires no user interaction since any prior knowledge about the measured signal and the noise power is needed. The presence or absence of a signal regardless of the shape of the spectrum can be detected. Hence, this method becomes a strong basis for high-quality operation mode of cognitive radios. Simulation and measurement results prove the advantages of the presented technique. The performance of the technique is evaluated for different signal-to-noise ratios (SNR) ranging from 0 to -21dB as required by the IEEE standard for smart radios. The method is compared with previous signal detection methods.
|
2 |
Modèles bayésiens pour la détection de synchronisations au sein de signaux électro-corticaux / Bayesian models for synchronizations detection in electrocortical signalsRio, Maxime 16 July 2013 (has links)
Cette thèse propose de nouvelles méthodes d'analyse d'enregistrements cérébraux intra-crâniens (potentiels de champs locaux), qui pallie les lacunes de la méthode temps-fréquence standard d'analyse des perturbations spectrales événementielles : le calcul d'une moyenne sur les enregistrements et l'emploi de l'activité dans la période pré-stimulus. La première méthode proposée repose sur la détection de sous-ensembles d'électrodes dont l'activité présente des synchronisations cooccurrentes en un même point du plan temps-fréquence, à l'aide de modèles bayésiens de mélange gaussiens. Les sous-ensembles d'électrodes pertinents sont validés par une mesure de stabilité calculée entre les résultats obtenus sur les différents enregistrements. Pour la seconde méthode proposée, le constat qu'un bruit blanc dans le domaine temporel se transforme en bruit ricien dans le domaine de l'amplitude d'une transformée temps-fréquence a permis de mettre au point une segmentation du signal de chaque enregistrement dans chaque bande de fréquence en deux niveaux possibles, haut ou bas, à l'aide de modèles bayésiens de mélange ricien à deux composantes. À partir de ces deux niveaux, une analyse statistique permet de détecter des régions temps-fréquence plus ou moins actives. Pour développer le modèle bayésien de mélange ricien, de nouveaux algorithmes d'inférence bayésienne variationnelle ont été créés pour les distributions de Rice et de mélange ricien. Les performances des nouvelles méthodes ont été évaluées sur des données artificielles et sur des données expérimentales enregistrées sur des singes. Il ressort que les nouvelles méthodes génèrent moins de faux-positifs et sont plus robustes à l'absence de données dans la période pré-stimulus / This thesis promotes new methods to analyze intracranial cerebral signals (local field potentials), which overcome limitations of the standard time-frequency method of event-related spectral perturbations analysis: averaging over the trials and relying on the activity in the pre-stimulus period. The first proposed method is based on the detection of sub-networks of electrodes whose activity presents cooccurring synchronisations at a same point of the time-frequency plan, using bayesian gaussian mixture models. The relevant sub-networks are validated with a stability measure computed over the results obtained from different trials. For the second proposed method, the fact that a white noise in the temporal domain is transformed into a rician noise in the amplitude domain of a time-frequency transform made possible the development of a segmentation of the signal in each frequency band of each trial into two possible levels, a high one and a low one, using bayesian rician mixture models with two components. From these two levels, a statistical analysis can detect time-frequency regions more or less active. To develop the bayesian rician mixture model, new algorithms of variational bayesian inference have been created for the Rice distribution and the rician mixture distribution. Performances of the new methods have been evaluated on artificial data and experimental data recorded on monkeys. It appears that the new methods generate less false positive results and are more robust to a lack of data in the pre-stimulus period
|
Page generated in 0.1165 seconds