• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 9
  • Tagged with
  • 45
  • 45
  • 36
  • 35
  • 34
  • 34
  • 34
  • 34
  • 34
  • 34
  • 34
  • 34
  • 31
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

High-pressure-induced starch gelatinisation and its application in a dairy system : a thesis presented in partial fulfilment of the requirements for the Doctor of Philosophy in Food Science at Massey University, Auckland, New Zealand

Oh, Hyunah Eustina January 2009 (has links)
This study investigated pressure-induced starch gelatinisation in water and milk suspensions. A rheological method, termed ‘pasting curves’, provided an objective and analytical means to determine the degree of pressure-induced starch gelatinisation. In addition, a polarised light microscope was used to observe birefringence of the starch granules and the degree of starch swelling was measured. The preliminary investigation into pressure-induced gelatinisation of six different starches showed that potato starch was the most pressure resistant and was not gelatinised after a pressure treatment of 600 MPa for 30 min at 20 °C. Waxy rice, waxy corn and tapioca starches showed complete gelatinisation after the same treatment while normal rice and normal corn starches were only partially gelatinised despite the disappearance of birefringence. Based on the preliminary study, two starches (normal and waxy rice starches) were selected for more detailed studies. The effects of treatment conditions (pressure, temperature and duration) on the gelatinisation were investigated with these selected starches. The degree of gelatinisation was dependent on the type of starch and the treatment conditions. The results also indicated that different combinations of the treatment conditions (e.g. high treatment pressure for a short time and low treatment pressure for a longer time) could result in the same degree of gelatinisation. Both starch types exhibited sigmoidal-shaped pressure-induced gelatinisation curves and there was a linear correlation between the degree of swelling and the apparent viscosity of the starch suspension. After treatments at =500 MPa for 30 min at 20 °C, both starches lost all birefringence although the apparent viscosity and the degree of swelling of normal rice starch did not increase to the same extent as observed in waxy rice starch. Pressure-induced gelatinisation of starch was retarded when starch was suspended in skim milk. This was attributed to the effect of soluble milk minerals and lactose present in the milk whereas milk proteins (casein and whey) did not affect the degree of gelatinisation at the levels present in 10% total solids skim milk. The presence of soluble milk and/or lactose may lead to less effective plasticising of starch chains by the suspension medium. Interactions between milk components and starch molecules may also play a role in retarding gelatinisation by reducing the mobility of starch chains. The functionality of starch in a dairy application was tested using acid milk gels as a model system. Skim milk with added starch (waxy rice or potato starch) was either pressure treated (500 MPa, 20°C, 30 min) or heat treated (80°C, 30 min) and subsequently acidified to form acid milk gels. The addition of waxy rice starch resulted in firmer acid milk gels, and increasing the amount of starch caused an increase in the firmness of both pressure-treated and heat-treated samples. However, pressure-treated samples with added potato starch did not show significant changes in the firmness whereas the heat-treated counterparts showed a marked increase in the firmness as the level of potato starch increased. The difference between the effects of the two different starches can be explained by the extent of starch gelatinisation in skim milk. Starch granules absorb water during gelatinisation whether induced by pressure or heat which effectively increases milk protein concentration in the aqueous phase to form a denser protein gel network on acidification. The firmness of acid milk gels can be increased by adjusting the pH at pressure or heat treatment to higher than the natural pH of milk. The effect of pH at pressure or heat treatment and addition of starch on the acid milk gel firmness was additive and independent of each other up to a starch addition level of 1%. This study provided an insight into pressure-induced gelatinisation of starch by showing gelatinisation properties of starches of different botanical origins and the effects of the treatment conditions (treatment pressure, treatment temperature and duration) on the degree of gelatinisation. Furthermore, the results from the pressure treatments of starch in dairy-based suspensions showed that pressure-induced gelatinisation was affected by other components in the system. These results demonstrate the importance of understanding the gelatinisation properties of starch in complicated food systems in which a number of other components are present. In terms of the application of starch in dairy systems, when starch was added to milk and gelatinised by pressure treatment, the acid milk gel produced by subsequent acidification was firmer than the acid milk gel made from skim milk alone.
42

High-pressure-induced starch gelatinisation and its application in a dairy system : a thesis presented in partial fulfilment of the requirements for the Doctor of Philosophy in Food Science at Massey University, Auckland, New Zealand

Oh, Hyunah Eustina January 2009 (has links)
This study investigated pressure-induced starch gelatinisation in water and milk suspensions. A rheological method, termed ‘pasting curves’, provided an objective and analytical means to determine the degree of pressure-induced starch gelatinisation. In addition, a polarised light microscope was used to observe birefringence of the starch granules and the degree of starch swelling was measured. The preliminary investigation into pressure-induced gelatinisation of six different starches showed that potato starch was the most pressure resistant and was not gelatinised after a pressure treatment of 600 MPa for 30 min at 20 °C. Waxy rice, waxy corn and tapioca starches showed complete gelatinisation after the same treatment while normal rice and normal corn starches were only partially gelatinised despite the disappearance of birefringence. Based on the preliminary study, two starches (normal and waxy rice starches) were selected for more detailed studies. The effects of treatment conditions (pressure, temperature and duration) on the gelatinisation were investigated with these selected starches. The degree of gelatinisation was dependent on the type of starch and the treatment conditions. The results also indicated that different combinations of the treatment conditions (e.g. high treatment pressure for a short time and low treatment pressure for a longer time) could result in the same degree of gelatinisation. Both starch types exhibited sigmoidal-shaped pressure-induced gelatinisation curves and there was a linear correlation between the degree of swelling and the apparent viscosity of the starch suspension. After treatments at =500 MPa for 30 min at 20 °C, both starches lost all birefringence although the apparent viscosity and the degree of swelling of normal rice starch did not increase to the same extent as observed in waxy rice starch. Pressure-induced gelatinisation of starch was retarded when starch was suspended in skim milk. This was attributed to the effect of soluble milk minerals and lactose present in the milk whereas milk proteins (casein and whey) did not affect the degree of gelatinisation at the levels present in 10% total solids skim milk. The presence of soluble milk and/or lactose may lead to less effective plasticising of starch chains by the suspension medium. Interactions between milk components and starch molecules may also play a role in retarding gelatinisation by reducing the mobility of starch chains. The functionality of starch in a dairy application was tested using acid milk gels as a model system. Skim milk with added starch (waxy rice or potato starch) was either pressure treated (500 MPa, 20°C, 30 min) or heat treated (80°C, 30 min) and subsequently acidified to form acid milk gels. The addition of waxy rice starch resulted in firmer acid milk gels, and increasing the amount of starch caused an increase in the firmness of both pressure-treated and heat-treated samples. However, pressure-treated samples with added potato starch did not show significant changes in the firmness whereas the heat-treated counterparts showed a marked increase in the firmness as the level of potato starch increased. The difference between the effects of the two different starches can be explained by the extent of starch gelatinisation in skim milk. Starch granules absorb water during gelatinisation whether induced by pressure or heat which effectively increases milk protein concentration in the aqueous phase to form a denser protein gel network on acidification. The firmness of acid milk gels can be increased by adjusting the pH at pressure or heat treatment to higher than the natural pH of milk. The effect of pH at pressure or heat treatment and addition of starch on the acid milk gel firmness was additive and independent of each other up to a starch addition level of 1%. This study provided an insight into pressure-induced gelatinisation of starch by showing gelatinisation properties of starches of different botanical origins and the effects of the treatment conditions (treatment pressure, treatment temperature and duration) on the degree of gelatinisation. Furthermore, the results from the pressure treatments of starch in dairy-based suspensions showed that pressure-induced gelatinisation was affected by other components in the system. These results demonstrate the importance of understanding the gelatinisation properties of starch in complicated food systems in which a number of other components are present. In terms of the application of starch in dairy systems, when starch was added to milk and gelatinised by pressure treatment, the acid milk gel produced by subsequent acidification was firmer than the acid milk gel made from skim milk alone.
43

High-pressure-induced starch gelatinisation and its application in a dairy system : a thesis presented in partial fulfilment of the requirements for the Doctor of Philosophy in Food Science at Massey University, Auckland, New Zealand

Oh, Hyunah Eustina January 2009 (has links)
This study investigated pressure-induced starch gelatinisation in water and milk suspensions. A rheological method, termed ‘pasting curves’, provided an objective and analytical means to determine the degree of pressure-induced starch gelatinisation. In addition, a polarised light microscope was used to observe birefringence of the starch granules and the degree of starch swelling was measured. The preliminary investigation into pressure-induced gelatinisation of six different starches showed that potato starch was the most pressure resistant and was not gelatinised after a pressure treatment of 600 MPa for 30 min at 20 °C. Waxy rice, waxy corn and tapioca starches showed complete gelatinisation after the same treatment while normal rice and normal corn starches were only partially gelatinised despite the disappearance of birefringence. Based on the preliminary study, two starches (normal and waxy rice starches) were selected for more detailed studies. The effects of treatment conditions (pressure, temperature and duration) on the gelatinisation were investigated with these selected starches. The degree of gelatinisation was dependent on the type of starch and the treatment conditions. The results also indicated that different combinations of the treatment conditions (e.g. high treatment pressure for a short time and low treatment pressure for a longer time) could result in the same degree of gelatinisation. Both starch types exhibited sigmoidal-shaped pressure-induced gelatinisation curves and there was a linear correlation between the degree of swelling and the apparent viscosity of the starch suspension. After treatments at =500 MPa for 30 min at 20 °C, both starches lost all birefringence although the apparent viscosity and the degree of swelling of normal rice starch did not increase to the same extent as observed in waxy rice starch. Pressure-induced gelatinisation of starch was retarded when starch was suspended in skim milk. This was attributed to the effect of soluble milk minerals and lactose present in the milk whereas milk proteins (casein and whey) did not affect the degree of gelatinisation at the levels present in 10% total solids skim milk. The presence of soluble milk and/or lactose may lead to less effective plasticising of starch chains by the suspension medium. Interactions between milk components and starch molecules may also play a role in retarding gelatinisation by reducing the mobility of starch chains. The functionality of starch in a dairy application was tested using acid milk gels as a model system. Skim milk with added starch (waxy rice or potato starch) was either pressure treated (500 MPa, 20°C, 30 min) or heat treated (80°C, 30 min) and subsequently acidified to form acid milk gels. The addition of waxy rice starch resulted in firmer acid milk gels, and increasing the amount of starch caused an increase in the firmness of both pressure-treated and heat-treated samples. However, pressure-treated samples with added potato starch did not show significant changes in the firmness whereas the heat-treated counterparts showed a marked increase in the firmness as the level of potato starch increased. The difference between the effects of the two different starches can be explained by the extent of starch gelatinisation in skim milk. Starch granules absorb water during gelatinisation whether induced by pressure or heat which effectively increases milk protein concentration in the aqueous phase to form a denser protein gel network on acidification. The firmness of acid milk gels can be increased by adjusting the pH at pressure or heat treatment to higher than the natural pH of milk. The effect of pH at pressure or heat treatment and addition of starch on the acid milk gel firmness was additive and independent of each other up to a starch addition level of 1%. This study provided an insight into pressure-induced gelatinisation of starch by showing gelatinisation properties of starches of different botanical origins and the effects of the treatment conditions (treatment pressure, treatment temperature and duration) on the degree of gelatinisation. Furthermore, the results from the pressure treatments of starch in dairy-based suspensions showed that pressure-induced gelatinisation was affected by other components in the system. These results demonstrate the importance of understanding the gelatinisation properties of starch in complicated food systems in which a number of other components are present. In terms of the application of starch in dairy systems, when starch was added to milk and gelatinised by pressure treatment, the acid milk gel produced by subsequent acidification was firmer than the acid milk gel made from skim milk alone.
44

Efeito de tratamentos químicos, revestimentos comestíveis e irradiação na conservação de mamões minimamente processados / Effect of chemical treatments, edible coatings, and irradiation on fresh-cut papaya conservation

Silvana Albertini 25 November 2011 (has links)
Avaliou-se o efeito de tratamentos químicos, revestimentos comestíveis e irradiação na conservação de mamões processados minimamente. Após seleção, lavagem e sanitização, os mamões foram descascados e cortados em meias rodelas, as quais foram submetidas a diferentes tratamentos, embaladas e armazenadas a 5±1°C e 90±2%UR. Os mamões PM foram avaliados após 1, 3, 6, 9, 12 e 15 dias. As análises microbiológicas foram fundamentadas na quantificação de coliformes totais e termotolerantes, bactérias psicrotróficas, bolores e leveduras, assim como na verificação da presença de Salmonella. As avaliações físico-químicas basearam-se na determinação da concentração de CO2 no interior das embalagens, perda de massa, cor, firmeza, sólidos solúv eis, acidez titulável, ratio e pH. As características sensoriais aparência, aroma, sabor e textura foram avaliad as por meio de testes com escala hedônica. No primeiro experimento os tratamentos foram: controle, aldeído cinâmico a 0,1%, cloreto de cálcio a 0,75% e combinação de aldeído cinâmico a 0,1% com cloreto de cálcio a 0,75%. O uso de tratamentos químicos em mamões PM resultou em: maior controle de coliformes totais para os mamões PM tratados com aldeído cinâmico e com a combinação de aldeído cinâmico e cloreto de cálcio; menor concentração de CO2 e maior manutenção da firmeza para mamões PM tratados com a combinação de aldeído cinâmico e cloreto de cálcio; e maior concentração de CO2 para os mamões PM tratados apenas com aldeído cinâmico. A imersão nos tratamentos químicos resultou em maior descoloração da polpa dos mamões PM e redução do teor de sólidos solúveis ao longo do armazenamento. No segundo experimento foram utilizados os tr atamentos: controle, amido de arroz a 3%, alginato de sódio a 0,5% e carboximetilcelulose a 0,25%. O uso desses três tipos de revestimento resultou em maior controle de coliformes totais do que o observado no controle. Mamões PM revestidos com amido de arroz e carboximetilcelulose apresentaram redução e aumento da concentração de CO2, respectivamente. Os mamões PM revestidos apresentaram menores teores de sólidos solúveis e seus valores de pH se tornaram menores após 9 dias de armazenamento refrigerado. O r evestimento com carboximetilcelulose proporcionou maior firmeza da polpa no 15° dia. No terceiro experimento foram utilizados os tratamentos: controle, radiação nas doses de 2kGy e 4kGy. O uso de radiação gama em mamões PM resultou em: maior controle de coliformes totais; menor concentração de CO2 nos mamões PM tratados com 2kGy; maior concentração de CO2 e maior descoloração da polpa nos mamões PM tratados com 4kGy; redução da firmeza nos mamões PM tratados com 2kGy e 4kGy; ligeira redução do teor de sólidos solúveis e pequenas variações da acidez titulável em todos os tratamentos. As características sensoriais dos mamões PM tratados com radiação gama não diferiram significativamente do controle durante os 15 dias de armazenamento / The effect of chemical treatments, edible coatings , and irradiation on fresh-cut papaya conservation was evaluated. After selection, washing, and sanitation the papayas were peeled and cut into half slices, which were submitted to different treatments, packed, and stored at 5±1°C and 90±2%RU. The fresh-cut papayas were evaluated after 1, 3, 6, 9, 12, and 15 days. The microbiological analyses were based on the count of total coliform, thermotolerant and psychrotrophic bacteria, molds and yeasts, as well as on the presence of Salmonella. The physicochemical evaluations were based on the determination of CO2 concentration inside the package, weight loss, color, firmness, soluble solids, titratable acidity, ratio, and pH. The sensory characteristics appearance, aroma, flavor, and texture were evaluated using a hedonic scale. In the first experiment, the treatments tested we re: control, cinnamic aldehyde 0.1%, calcium chloride 0.75%, and the combination of cinnamic aldehyde 0.1% and calcium chloride 0.75%. Using chemical treatments to preserve fresh cut papaya resulted in: higher control of total coliforms in fresh-cut papayas treated with cinnamic aldehyde and with the combination of cinnamic aldehyde and calcium chloride; lower CO2 concentration and increased maintenance of firmness in freshcut papayas treated with the combination of cinnamic aldehyde and calcium chloride; and increased in the CO2 concentration in fresh-cut papayas treated only with cinnamic aldehyde. Immersion in chemical treatments caused higher pulp discoloration and reduction in solu ble solids during storage. In the second experiment, the treatments tested were: control, rice starch 3%, sodium alginate 0.5%, and carboxymethylcellulose 0.25%. The use of these three coatings resulted in higher control of total coliforms compared to the control treatment. The fresh-cut papayas coated with rice starch and carboxymethylcellulose presented reduction and increase in the CO2 concentration, respectively. Coated fresh-cut papayas presented lower soluble solids and pH values were lower after 9 days of cold storage. Carboxymethylcellulose coating increased firmness maintenance at day 15. In the third experiment, the following treatments were used: control, radiation at the doses of 2kGy and 4kGy. The use of Gamma radiation in fresh-cut papaya resulted in: higher control of total coliforms; lower CO2 concentration in fresh-cut treated with 2kGy; increased CO2 concentration and increased pulp discoloration in fresh-cut papayas treated with 4kGy; reduction in firmness in fresh-cut papayas treated with 2kGy and 4kGy; slight reduction in soluble solids and small changes in titratable acidity in all treatments. The sensory characteristics of fresh-cut papayas treated with gamma radiation did not significantly differ from the control during the 15 days of storage
45

PROCESSAMENTO DE CERÂMICAS COM POROSIDADE GRADUADA UTILIZANDO AS TÉCNICAS DE FREEZE CASTING E COLAGEM DE BARBOTINA

Carvalho, Gustavo Antoniácomi de 30 January 2018 (has links)
Submitted by Angela Maria de Oliveira (amolivei@uepg.br) on 2019-02-27T11:49:16Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Gustavo Antoniacomi de Carvalho.pdf: 6310308 bytes, checksum: 8e1efd9d86bc5a1adf80b45bba2a3985 (MD5) / Made available in DSpace on 2019-02-27T11:49:16Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Gustavo Antoniacomi de Carvalho.pdf: 6310308 bytes, checksum: 8e1efd9d86bc5a1adf80b45bba2a3985 (MD5) Previous issue date: 2018-01-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Cerâmicas porosas vêm ganhando visibilidade devido a algumas aplicações tecnológicas interessantes, tais como a utilização em eletrólitos sólidos, ânodos de células a combustível, filtros cerâmicos e reposição óssea e dental. Dentre elas, há especial atenção ao estudo de materiais porosos com porosidade graduada, nos quais a quantidade de poros e a morfologia dos mesmos se alteram pelo volume do material. Nesse trabalho foi realizado o processamento e caracterização de materiais cerâmicos de alumina com porosidade graduada a partir das técnicas de freeze casting e colagem de barbotina, utilizando hidróxido de alumínio e amido de arroz como fases de sacrifício. Após a conformação das amostras por esses métodos, a porosidade foi caracterizada por microscopia eletrônica de varredura, pelas medidas de porosidade aparente feita pelo Princípio de Arquimedes e pela distribuição de tamanho de poros feita pela técnica de porosimetria de mercúrio. Foi avaliada também a resistência mecânica das amostras a partir de ensaio de compressão. Foi confirmada a relação entre as amostras processados isoladamente e suas respectivas camadas nas amostras graduadas. Foi observada também uma boa interação interfacial entre cada uma das camadas das amostras graduadas. A porosidade das amostras com porosidade graduada se manteve próxima do esperado, o valor esperado foi determinado a partir da média das amostras processadas isoladamente em relação às camadas do material com porosidade graduada. O ensaio mecânico demonstrou que não houve influência das interfaces dos materiais graduados na sua resistência à compressão. / Porous ceramics have been gaining visibility due to some interesting technological applications, such as its use as solid electrolytes, fuel cell anodes, ceramic filters and bone and dental reposition. Among them, there is special care in studying graded porosity materials, where the quantity of pores and pore morphology changes through the material volume. In this work the processing and characterization of alumina ceramic materials with functionally graded porosity by freeze casting and slip casting techniques using aluminum hydroxide and rice starch as sacrificial template was performed. After conformation, the porosity was characterized through electron scanning microscopy, apparent porosity through Archimedes method and median pore size through mercury porosimetry. The mechanical resistance was also obtained by compression testing. The analysis allowed to confirm the relation between each of the isolated samples’ microstructure and its respective layer in each of the graded materials, also, the graded materials shown good interfacial interaction between each of the layers. The porosity in graded materials kept close to the expected value, which was determined by the medium value of the porosities of the isolated samples respective to the graded material. Mechanical testing shown that there was no influence of the graded material interfaces in its compressive strength.

Page generated in 0.0671 seconds