• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neue Herleitung und explizite Restabschätzung der Riemann-Siegel-Formel / Derivation of the Riemann-Siegel formula with explicit estimates of its remainders

Gabcke, Wolfgang 15 February 1979 (has links)
Die asymptotische Entwicklung der Funktion \(Z(t)=e^{i\vartheta(t)}\zeta{(1/2+it)}\) für reelle \(t\to+\infty\) (dabei ist \(\vartheta(t)=\Im\log{\Gamma{(1/4+it/2)}}-(t\log{\pi})/2\) und \(\zeta{(1/2+it)}\) die Riemannsche Zetafunktion auf der kritischen Geraden $\Re{(s)}=1/2$ – heute allgemein als Riemann–Siegel–Formel bezeichnet – wird auf neue Weise mit Hilfe der Sattelpunktmethode aus der sogenannten Riemann–Siegel"–Integralformel hergeleitet. Die Formeln zur Berechnung der in der asymptotischen Reihe auftretenden Koeffizienten werden vereinfacht und für \(t \ge 200\) explizite Fehlerabschätzungen für die ersten 11 Partialsummen dieser Reihe angegeben. Der tabellarische Anhang enthält u. a. die exakte Darstellung der ersten 13 Koeffizienten der asymptotischen Reihe in der auf D. H. Lehmer zurückgehenden Form sowie die Potenzreihenentwicklungen und die Entwicklungen nach Tschebyscheffschen Polynomen 1. Art der ersten 11 Koeffizienten mit einer Genauigkeit von 50 Dezimalstellen.

Page generated in 0.0575 seconds