Spelling suggestions: "subject:"riemannian metrics"" "subject:"hiemannian metrics""
1 |
Topics in estimation of quantum channelsO'Loan, Caleb J. January 2010 (has links)
A quantum channel is a mapping which sends density matrices to density matrices. The estimation of quantum channels is of great importance to the field of quantum information. In this thesis two topics related to estimation of quantum channels are investigated. The first of these is the upper bound of Sarovar and Milburn (2006) on the Fisher information obtainable by measuring the output of a channel. Two questions raised by Sarovar and Milburn about their bound are answered. A Riemannian metric on the space of quantum states is introduced, related to the construction of the Sarovar and Milburn bound. Its properties are characterized. The second topic investigated is the estimation of unitary channels. The situation is considered in which an experimenter has several non-identical unitary channels that have the same parameter. It is shown that it is possible to improve estimation using the channels together, analogous to the case of identical unitary channels. Also, a new method of phase estimation is given based on a method sketched by Kitaev (1996). Unlike other phase estimation procedures which perform similarly, this procedure requires only very basic experimental resources.
|
2 |
Fenômeno de bifurcação no problema de Yamabe sobre variedades riemannianas com bordo / Phenomenon of bifurcation in Yamabe problem on Riemannian manifolds with boundaryCardenas Diaz, Elkin Dario 16 August 2016 (has links)
No presente trabalho consideramos o produto de uma variedade Riemanniana compacta sem bordo de curvatura escalar zero e uma variedade Riemanniana compacta com bordo, curvatura escalar zero e curvatura media constante no bordo, e fazemos uso da teoria de bifurcação para provar a existência de um numero infinito de classes conforme com, pelo menos, duas métricas Riemannianas não homotéticas de curvatura escalar zero e curvatura média constante no bordo, sobre a variedade produto. / In this work, we consider the product of a compact Riemannian manifold without boundary, null scalar curvature and a compact Riemannian manifold with boundary, null scalar curvature and constant mean curvature on the boundary and we use the bifurcation theory to prove the existence of a infinite number of conformal classes with at least two non homothetic Riemannian metrics of null scalar curvature and constant mean curvature of the boundary on the product manifold.
|
3 |
Fenômeno de bifurcação no problema de Yamabe sobre variedades riemannianas com bordo / Phenomenon of bifurcation in Yamabe problem on Riemannian manifolds with boundaryElkin Dario Cardenas Diaz 16 August 2016 (has links)
No presente trabalho consideramos o produto de uma variedade Riemanniana compacta sem bordo de curvatura escalar zero e uma variedade Riemanniana compacta com bordo, curvatura escalar zero e curvatura media constante no bordo, e fazemos uso da teoria de bifurcação para provar a existência de um numero infinito de classes conforme com, pelo menos, duas métricas Riemannianas não homotéticas de curvatura escalar zero e curvatura média constante no bordo, sobre a variedade produto. / In this work, we consider the product of a compact Riemannian manifold without boundary, null scalar curvature and a compact Riemannian manifold with boundary, null scalar curvature and constant mean curvature on the boundary and we use the bifurcation theory to prove the existence of a infinite number of conformal classes with at least two non homothetic Riemannian metrics of null scalar curvature and constant mean curvature of the boundary on the product manifold.
|
4 |
Ομογενείς μετρικές Einstein σε γενικευμένες πολλαπλότητες σημαιώνΧρυσικός, Ιωάννης 16 June 2011 (has links)
Μια πολλαπλότητα Riemann (M, g) ονομάζεται Einstein αν έχει σταθερή καμπυλότητα Ricci.
Είναι γνωστό ότι αν (M=G/K, g) είναι μια συμπαγής ομογενής πολλαπλότητα Riemann,
τότε οι G-αναλλοίωτες μετρικές Einstein μοναδιαίου όγκου,
είναι τα κρίσιμα σημεία του συναρτησοειδούς ολικής βαθμωτής καμπυλότητας
περιορισμένο στο χώρο των G-αναλλοίωτων μετρικών με όγκο 1.
Για μια G-αναλλοίωτη μετρική Riemann η εξίσωση Einstein
ανάγεται σε ένα σύστημα αλγεβρικών εξισώσεων.
Οι θετικές πραγματικές λύσεις του συστήματος αυτού είναι
ακριβώς οι G-αναλλοίωτες μετρικές Einstein που δέχεται η
πολλαπλότητα Μ.
Μια σημαντική οικογένεια συμπαγών ομογενών χώρων αποτελείται
από τις γενικευμένες πολλαπλότητες σημαιών. Κάθε τέτοιος χώρος
είναι μια τροχιά της συζυγούς αναπαράστασης μιας συμπαγούς, συνεκτικής,
ημι-απλής ομάδας Lie G. Πρόκειται για ομογενείς πολλαπλότητες της
μορφής G/C(S), όπου C(S) είναι ο κεντροποιητής ενός δακτυλίου S στην G.
Κάθε τέτοιος χώρος δέχεται ένα πεπερασμένο πλήθος από
G-αναλλοίωτες μετρικές Kahler-EInstein.
Στην παρούσα διατριβή ταξινομούμε όλες τις πολλαπλότητες σημαιών
G/K που αντιστοιχούν σε μια απλή ομάδα Lie G,
των οποίων η ισοτροπική αναπαράσταση διασπάται σε 2 ή 4
μη αναγώγιμους και μη ισοδύναμους Ad(K)-αναλλοίωτους προσθετέους.
Για κάθε τέτοιο χώρο λύνουμε την αναλλοίωτη εξίσωση Εinstein,
και παρουσιάζουμε την αναλυτική μορφή νέων G-αναλλοίωτων μετρικών
Einstein. Στις περισσότερες περιπτώσεις παρουσιάζουμε την πλήρη ταξινόμηση των αναλλοίωτων μετρικών Einstein. Επίσης εξετάζουμε το ισομετρικό πρόβλημα.
Για την κατασκευή της εξίσωσης Einstein σε κάποιες
πολλαπλότητες σημαιών με 4 ισοτροπικούς προσθετέους
χρησιμοποιούμε την νηματοποίηση συστροφής που δέχεται
κάθε πολλαπλότητα σημαιών επί ενός ισοτροπικά
μη αναγώγιμου συμμετρικού χώρου συμπαγούς τύπου.
Αυτή η μέθοδος είναι καινούργια και μπορεί να εφαρμοστεί και σε άλλες πολλαπλότητες σημαιών. / A Riemannian manifold (M, g) is called Einstein, if it has constant Ricci curvature. It is well known that if (M=G/K, g) is a compact homogeneous Riemannian manifold, then the G-invariant \tl{Einstein} metrics of unit volume, are the critical points of the scalar curvature function restricted to the space of all G-invariant metrics with volume 1. For a G-invariant Riemannian metric the Einstein equation reduces to a system of algebraic equations. The positive real solutions of this system are the $G$-invariant Einstein metrics on M.
An important family of compact homogeneous spaces consists of the generalized flag manifolds. These are adjoint orbits of a compact semisimple Lie group. Flag manifolds of a compact connected semisimple Lie group exhaust all compact and simply connected homogeneous Kahler manifolds and are of the form G/C(S), where C(S) is the centralizer (in G) of a torus S in G. Such homogeneous spaces admit a finite number of G-invariant complex structures, and for any such complex structure there is a unique compatible G-invariant Kahler-Einstein metric.
In this thesis we classify all flag manifolds M=G/K of a compact simple Lie group G, whose isotropy representation decomposes into 2 or 4, isotropy summands. For these spaces we solve the (homogeneous) Einstein equation, and we obtain the explicit form of new G-invariant Einstein metrics. For most cases we give the classification of homogeneous Einstein metrics. We also examine the isometric problem. For the construction of the Einstein equation on certain flag manifolds with four isotropy summands, we apply for first time the twistor fibration of a flag manifold over an isotropy irreducible symmetric space of compact type. This method is new and it can be used also for other flag manifolds.
For flag manifolds with two isotropy summands, we use the restricted Hessian and we characterize the new Einstein metrics as local minimum points of the scalar curvature function restricted to the space of G-invariant Riemannian metrics of volume 1. We mention that the classification of flag manifolds with two isotropy summands gives us new examples of homogeneous spaces, for which the motion of a charged particle under the electromagnetic field, and the geodesics curves, are completely determined.
|
Page generated in 0.0648 seconds