• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 12
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 50
  • 21
  • 21
  • 20
  • 13
  • 12
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Role of hyperextension for the formation of rift systems and its implication for reactivation processes and orogen formation : the example of the Bay of Biscay and Pyrenees / Rôle de l’hyper-extension lors de la formation de systèmes de rift et implication pour les processus de réactivation et de formation des orogènes : l’exemple du Golfe de Gascogne et des Pyrénées

Tugend, Julie 28 November 2013 (has links)
Les études couplant des observations provenant des marges passives actuelles et d’analogues fossiles ont permis de mieux appréhender les mécanismes d’extension de la lithosphère. Néanmoins, l’évolution spatiale et temporelle des processus de rupture continentale et de formation de croûte océanique reste mal contrainte. Le Golfe de Gascogne et les Pyrénées sont utilisés dans ce travail comme laboratoire naturel pour étudier la formation et la réactivation des systèmes de rift. Le développement et l’application d’une approche terre-mer a permis d’identifier, caractériser et cartographier les domaines de rift formés lors de l’ouverture du Golfe de Gascogne et partiellement intégrés à l’orogène Pyrénéenne. Cette cartographie révèle l’architecture complexe de la limite de plaque Ibérie-Europe résultant d’une évolution fortement polyphasée. Plusieurs systèmes de rift spatialement distincts sont préservés à des stades d’évolution différents. Une segmentation importante partiellement héritée de la structuration prérift contrôle la formation des systèmes de rift ce qui a des implications pour la cinématique régionale. Plusieurs étapes de la déformation compressive ont pu être distinguées et mises en relation avec l’architecture héritée du rift. La réactivation est initiée dans le domaine de manteau exhumé. Après lasubduction de croûte hyper-amincie, la collision continentale est contrôlée par les domaines proximaux et de necking qui jouent le rôle de buttoirs. Ces résultats soulignent l’interaction étroite entre l’héritage pré-rift et l’évolution spatiale des systèmes de rift ainsi que l’importance de l’architecture du rift pour comprendre la formation des orogènes. / Knowledge on lithosphere extensional mechanisms has greatly benefited from studies made both at presentday rifted margins and onshore fossil analogues. Nevertheless, the spatial and temporal evolution of the processes leading to continental break-up and oceanic crust formation remains poorly constrained. The Bay of Biscay and Pyrenees is used in this study as a natural laboratory to investigate the formation and reactivation of rift systems. A new offshore-onshore approach is developed and applied to identify, characterize and map the rift domains inherited from the Bay of Biscay opening and partly integrated into the Pyrenean orogen. This mapping reveals the complex architecture of European-Iberian plate boundary resulting from a strongly polyphased evolution. Several rift systems spatially distinct are preserved at different evolutionary stages. An important segmentation partially inherited from the pre-rift structuration controls the formation of the rift systems, an observation that has important implications for regional kinematic restorations. Several steps in compressional deformation can be distinguished and related to the rift inherited architecture. Reactivation is initiated in the exhumed mantle domain. Following the subduction of hyperthinned crust, continental collision processes are controlled by the proximal and necking domains acting as buttresses. These results emphasize the role of pre-rift inheritance for the spatial evolution of rift systems and the importance of the rift-related architecture to unravel the formation of collisional orogen.
12

Rupture continentale oblique : évolution tectonique du Golfe de Californie (Basse californie du Sud) du Néogène à l'actuel / Mechanisms of oblique breakup : a tectonic study of the Gulf of California from Neogene to present

Bot, Anna 01 September 2016 (has links)
Le Golfe de Californie (GOC) est un exemple de rift très oblique, au stade d'accrétion depuis 3,6 Ma au sud. La déformation continentale débute au Miocène dans un contexte arrière-arc, en relation avec la subduction de la plaque Pacifique sous la Plaque Nord-Américaine. L'objectif de cette thèse est de déterminer I'histoire de la déformation à I'origine de la rupture continentale ainsi que les phénomènes post-rupture. Cette étude utilise des données tectoniques, sismologiques et géomorphologiques sur la marge Ouest du GOC en Basse Californie du Sud. Elles sont calées temporellement par des datations d'isotopes radiogéniques et cosmogéniques. Une histoire polyphasée de la déformation, essentiellement post-magmatique, est proposée en termes d'évolution des directions des failles et de déformations relativement à la cinématique des plaques. Je démontre dans cette zone que la déformation qui conduit à l'amincissement et à l'étirement lithosphérique est d'abord fortement oblique et devient transtensive et moins oblique relativement à la cinématique à partir de 7-8 Ma. La marge étudiée est intégrée de manière cohérente à I'ensemble des domaines déformés associés à la formation du GOC. On montre notamment que les marges du GOC sont diachrones et qu'elles se forment par migration vers I'Ouest de la déformation vers la zone de subduction, qui devient inactive vers 12 Ma. La dynamique post-breakup du GOC est interprétée en termes de mobilisation par fluage de la croûte inférieure en relation avec un évènement thermique lié à la rupture du slab. En conclusion, l'évolution du GOC ne peut s'expliquer par les modèles simples de rifting oblique et de formation de marges passives. / The Gulf of California (GOC) is an example of highly-oblique rift. Oceanic accretion started 3.6 Ma ago at its southern end. The earliest continental extension started during the Miocene, in a back-arc setting, in connection with the subduction of the Pacific plate (PAC) beneath North America (NAM). ln this study, I reconstitute the strain evolution along the proximal Baja California margin. For this, I used original tectonic and seismological data which I collected in Baja California Sur (BCS). Those data were time-constrained with absolute dating (radiogenic and cosmogenic isotopes). I outline that the main stretching and thinning of the Late Miocene-Pliocene Baja California margin was highly oblique regarding NAM-PAC kinematic vector, turning less oblique. By integrating the studied margin in the evolution of the GOC, it is proposed that the final break-up mechanism occurred within a broad semi-ductile right-lateral central shear-zone. lt is shown that the two GOC passive margins didn't form at the same time, crustal strain migrating westward during the Miocene in response to a probable retreat of the dying slab. The active post-breakup deformation in the proximal BCS is best interpreted in connection with an outward flow of the lower crust in a trend compatible with the margin shaping inherited from the major GOC-normal to GOC-oblique Miocene crustal deformation. This ductile flow would be enhanced by the heat input from the slab rupture. To conclude, the GOC evolution as an oblique rift system adjusts with no existing analogical or numerical model of strain field evolution of oblique rifting, a probable consequence to the complex dynamics in back-arc settings.
13

Formation et évolution du bassin de Boucheville, implication sur l’évolution tectonique, métamorphique et sédimentaires des bassins sédimentaires mésozoïques du Nord-Est des Pyrénées / Formation and evolution of the Boucheville basin, implication on the tectonic, metamorphic and sedimentary evolution of the North-East Pyrenean Mesozoic sedimentary basins

Chelalou, Roman 14 December 2015 (has links)
Les mécanismes extensifs, matérialisés physiquement sous la forme de rifts ou de marges passives, impliquent des interactions entre les processus tectoniques, sédimentaires et métamorphiques, particulièrement quand ils sont associés à un métamorphisme de haute température. L'étude de ces mécanismes ne peut donc se faire correctement que par une approche triple afin de cerner ces différents aspects et de contraindre les interactions qui les relient. Une telle étude est difficile du fait de la profondeur à laquelle ont lieu ces mécanismes et donc de l'absence d'observation directe des objets géologiques qu'ils produisent. L'alternative consiste à étudier une paléo marge passive portée à l'affleurement. Dans le cadre de cette thèse, notre choix s'est porté sur la Zone Nord Pyrénéenne qui correspond à une paléo-marge passive mésozoïque qui a été mise à l'affleurement lors de la compression pyrénéenne à l'Éocène/Oligocène (40-20 Ma). Cette marge a subi une métamorphise HT/BP et constitue donc un bon analogue pour notre étude. Nous nous sommes concentrés en particulier sur la partie Est de la ZNP, dans la région du massif de l'Agly qui rassemble les bassins de Saint Paul-de-Fenouillet, du Bas-Agly et de Boucheville qui ont enregistré différentes intensités du métamorphisme. Le bassin de Boucheville étant le moins bien documenté mais ayant enregistré le métamorphisme le plus important, nous nous sommes attachés à le caractériser en détail. Nous avons effectué une étude structurale, stratigraphique et sédimentaire de ces trois bassins afin de bien contraindre leur géométrie et leur histoire. Nous avons couplé cette étude avec des analyses du métamorphisme, principalement par des mesures par spectrométrie Raman des températures maximum enregistrées lors de l'extension crétacée. Enfin, nous avons combiné ces résultats afin de produire des coupes restaurées de l'ensemble de notre zone d'étude. Ces coupes restaurées nous ont permis de proposer un modèle de la mise en place des bassins sédimentaires mésozoïques dans la partie orientale de la ZNP. Il apparaît au premier ordre que la zone est constituée, sur une coupe N-S, par un haut fond topographique constitué du futur massif de l'Agly, limité au nord par un détachement à vergence nord et au sud par un détachement à vergence sud. De part et d'autre de ce haut fond se mettent en place des bassins sédimentaires présentant une augmentation de l'épaisseur des dépôts au droit de ces détachements. Au seconde ordre, il faut considérer que le système n'est pas cylindrique et que le massif de l'Agly se comporte comme une zone de transfert entre une subsidence forte au nord-est dans le bassin du Bas-Agly et une subsidence forte au sud-ouest dans le bassin de Boucheville. / Extensive mechanisms induce interactions between tectonic, sedimentary and metamorphic processes, especially when they are associated with a high temperature metamorphism. Therefore, the study of these mechanisms requires a threefold approach in order to identify these processes and understand the interactions between them. Such study is hardened because of the depth of these mechanisms and the lack of direct observation. To overcome such difficulties we chose to study a paleo passive margin now visible thanks to many outcrops. For this thesis, we focused on the North Pyrenean Zone (NPZ) which happens to be a Mesozoic passive margin which outcroped during Eocene / Oligocene (40-20 Ma) Pyrenean compression. This margin recorded HT / LP metamorphism which makes it a good analogue for our study. We focused on the eastern part of the NPZ, in the Agly Massif area where are located the Saint Paul-de-Fenouillet basin, the bas-Agly basin and the Boucheville basin all of which recorded different intensity of metamorphism. The Boucheville basin is the worst documented but recorded the most metamorphism which is why we decided to study it in detail. We undergone a structural, stratigraphic and sedimentary analysis of these three basins in order to better understand their geometry and geological history. We combined this study with metamorphism analyzes mainly provided by Raman spectrometry on maximum temperatures recorded during Cretaceous extension. Finally, we synthetised these results to produce restored cross sections of our study area. Those cross sections allowed us to suggest a model for Mesozoic sedimentary basin formation in the eastern part of the NPZ. Considering first order analysis, on a N-S cross section, the area made of a shoal,the future Agly Massif. It is bordered on its northern side by a north verging detachment fault and on its southern by a south verging detachment fault. On both sides of this shoal are sedimentary basins much thicker towards these detachment faults. However, we must consider the system is not cylindrical. The Agly Massif acts as a transfer zone between two highly subsident basins, the Bas-Agly basin at its north-east and the Boucheville basin at its south-west.
14

The 2014-15 Bárðarbunga-Holuhraun magmatic rifting episode : a seismic study

Agustsdottir, Thorbjorg January 2018 (has links)
On 16 August 2014 an unusual sequence of earthquakes began near the southeastern rim of the ice-covered Bárðarbunga caldera in central Iceland. Over the course of two weeks a dyke propagated 48 km beneath the glacier northeastwards and into the Holuhraun lava field, where it erupted for six months, becoming the largest eruption in Iceland for over 200 years. During this time, a gradual, incremental caldera collapse took place in the central volcano. The rifting episode was captured both geodetically and seismically. In this thesis, I analyse the seismic response to the event, both due to the dyke propagation, and the subsequent caldera collapse. This gives an insight into the underlying processes controlling rifting events, and the nature of the responding crust. The Cambridge seismic network recorded the 2014-15 Bárðarbunga-Holuhraun rifting episode in exceptional detail. I discuss the deployment and operation of this dense seismic network in the remote Icelandic highlands, as well as the campaign deployments on the volcano caldera, on the glacier (above the dyke path) and around the eventual eruption site, as a first response to the crisis. Using this dataset I have accurately located, and analysed, 47,000 earthquakes during the pre-intrusive, intrusive, eruptive and post-eruptive periods. Approximately 4,000 of the recorded earthquakes are associated with the caldera collapse, delineating faults accommodating the subsidence and showing good correlation with geodetic data. The seismicity reveals activation of both inner and outer caldera faults with 60 inward dipping planes on the northern and southern side, indicating a symmetric caldera structure. Detailed analysis of the earthquake source mechanisms shows that 90% can be explained by a double-couple solution, which is in contrast to results from previous studies of Bárðarbunga. I find the dominant failure mechanism during the collapse to be steep normal faulting, with sub-vertical P-axes, striking sub-parallel to the caldera rim. The northern and southern sides of the caldera, however experienced very different seismicity rates, highlighted by the order of magnitude difference in the cumulative seismic moments. The southeastern part of the caldera, whilst experiencing less activity, shows a mixture of failure mechanisms, owing to the interaction of the caldera collapse and the dyke exit. Therefore, this thesis presents evidence of a complex asymmetric caldera collapse, not controlled by a single caldera ring fault. Of the 47,000 earthquakes located, 31,000 delineate the segmented, lateral dyke intrusion as it fractured a pathway through the crust, utilizing pre-existing weaknesses. Despite the extensional rift setting, the dyke emplacement generated exclusively doublecouple earthquakes. At the leading edge of the propagation, earthquake source mechanisms show exclusively strike-slip faulting, in contrast to the conventional model of normal faulting above a propagating dyke. I observe right-lateral strike-slip faulting as the dyke propagates to the NE, and an abrupt change to left-lateral strike-slip faulting as the dyke turns and propagates in a more northerly direction into the northern volcanic zone. This shows that the direction of fault motion is determined by the opening of the dyke, rather than by the regional extension. I am also able to define the thickness of the seismogenic crust under Bárðarbunga as 7 km, based on the depth extent of observed seismicity. The bulk of the seismicity in the volcano is located at 1-4 km below the surface, whereas the dyke exited the caldera at 4-6 km depth, propagating at 6-8 km b.s.l. I hypothesise that the magma storage region is likely located at 4-6 km b.s.l. (6-8 km below the caldera surface), just below the most active caldera seismicity and at similar depth levels to the dyke. Thus, this thesis details the melt distribution and movement at depth from a large basaltic central volcano, and the coupled deformation of the subsiding caldera with the dyke intrusion and eruption.
15

Le Trias et le Lias inférieur de la bordure occidentale du Massif du Pelvoux ( Alpes occidentales) : stratigraphie et tectonique synsédimentaire.

Baron, Philippe 13 November 1981 (has links) (PDF)
Ce travail s'inscrit dans le cadre de l'étude de la naissance et de l'évolution de la Tethys mésozoïque et de sa marge continentale européenne. Il concerne les effets de la période pré-océanique (Trias) et ceux de la transition au rifting (Lias inférieur), observables dans les sédiments de la bordure occidentale du Pelvoux. L'analyse des sédiments triasiques et liasiques a permis de distinguer les formations successives suivantes : 1 à 4 Trias : 1) Grès de base peu épais, ils proviennent de l'altération du cris tallin sous-jacent. 2) Formation carbonatée médiane (20 m environ), : bancs dolomitiques (parfois calcaires). La présence de pseudomorphoses de nodules d'anhydrite et de cristaux de gypse, de fentes de dessication, de bioturbations etc. indique un dépôt en milieu lagunaire supratidal, à tendance réductrice et sans courants importants. Elle est datée de la limite Trias moyen - Trias supérieur 3) Formation des schistes noirs (1 à la m) : ce sont des dépôts détritiques fins ne présentant pas de stratifications entrecroisées, associés à de petits bancs dolomitiques dépôt dans des lacs de faible profondeur. 4) Formation argilo-carbonatée supérieure (10 à 60 m , y compris les coulées spilitiques) : alternance d'argilites rouges ou vertes et de bancs dolomitiques et/ou calcaires. On y observe des intercalations de coulées spilitiques, remplaçant même tous les sédiments vers le haut de la formation. La présence de nodules dolomitiques, de couleurs de marmorisation, dans les argilites , de fentes de dessication et de laminations algaires, dans les dolomies ou les calcaires indique un domaine de sédimentation supratidal composé d'une juxtaposition de zones faiblement immergées avec ou sans courant et de zones émergées. 5-6 LIAS 5) Hettangien inférieur (ou Rhétien?) : 0 à 15 m ; alternance de calcaires souvent lumachelliques et de marnes ou d'argilites vertes: milieu de sédimentation variant d'un domaine intertidal marin ouvert à supratidal. Hettangien supérieur : Calcaires bioclastiques en bancs demi-métriques : milieu de sedimentation dans un domaine subtidal marin ouvert. 6) Sinémurien : alternance bien réglée de bancs décimétriques de marnes et de calcaires de type mudstone : ils se sont déposés en milieu marin franc et indiquent un approfondissement du bassin de sédimentation. La cartographie et la mise en évidence de variations lithologiques entre les coupes ont permis de reconstituer l'histoire tectono-sédimentairë suivante : 1) les premiers dépôts triasiques moulent une paléotopographie anté-triasique composée de petits reliefs ne dépassant pas une quinzaine de mètres de dénivelée. 2) la tectonique triasique elle-même se manifeste essentiellement entre le début du dépôt de la formation 4 et l'Hettangien inférieur. C'est une tectonique distensive qui crée un réseau de failles normales*à faibles rejets, d'orientation subméridienne et N 65°-70°. Localement, on observe, centré sur un petit paléograben déterminé par des failles subméridiennes, un olistolithe intratriasique. Ailleurs, on a pu mettre en évidence un léger basculement du substratum. Enfin cette tectonique est immédiatement suivie par la mise en place de coulées volcaniques. Celles-ci cicatrisent, au Norien-Rhétien et à l'Hettangien inférieur, les structures triasiques. 3) Après une période d'érosion peu intense, la mer hettangienne envahit progressivement toute la région étudiée. La tectonique liasique se manifeste dès cette époque. Elle est distensive et est responsable de la subsidence, notamment de l'approfondissement brutal du bassin de sédimentation vers la limite Hettangien-Sinémurien. Elle donne naissance à des failles normales d'orientation grossièrement N-S qui sont associées à des basculements synsédimentaires du substratum et à la mise en place d'olistolithes. L'amplitude des mouvements verticaux est plus importante au Lias qu'au Trias .
16

Déchirure continentale et segmentation du Golfe d'Aden Oriental en contexte de rifting oblique

Autin, Julia 05 December 2008 (has links) (PDF)
Le Golfe d'Aden sépare la plaque Somalie de la plaque Arabie. Il constitue un objet d'étude intéressant pour la compréhension du développement des marges continentales passives. Le rifting débute vers 35 Ma et l'accrétion se développe à partir de 17,6 Ma dans la zone étudiée. De plus, la direction d'ouverture du Golfe d'Aden est fortement oblique par rapport à sa direction. Sur la marge nord-est, la campagne Encens (N/O l'Atalante, 2006) a permis l'acquisition de nouvelles données de sismique réflexion 360 traces, notamment sur le segment de premier ordre entre les zones de fracture d'Alula-Fartak et de Socotra. À la segmentation de premier ordre (zones de fracture) s'ajoute une segmentation de second ordre qui présente des structures et des morphologies différentes selon les segments, notamment au niveau de la transition océan-continent (TOC). Les segments étudiés suggèrent que la partie ouest de la zone d'étude (segment d'Ashawq-Salalah) est caractérisée par un magmatisme post-rift conséquent tandis que la partie orientale de la zone d'étude (segment de Mirbat) possède une morphologie qui semble être fortement tectonisée. L'évolution tectono-stratigraphique du segment d'Ashawq-Salalah a pu être étudiée en détail (migration avant sommation profondeur et corrélation terre-mer des processus sédimentaires). La marge est tout d'abord structurée par des grabens et des horsts syn-rift. Puis on observe une localisation de la déformation sur la marge distale. Au début de la formation de la TOC, un soulèvement local ou régional induit un glissement de terrain au sommet du horst le plus distal. La déformation crustale est alors localisée dans la TOC, où la rupture continentale va finalement se produire. La nature de la TOC pourrait être du manteau serpentinisé, postérieurement intrudé par du matériel magmatique pendant la période post-rift. La couverture sédimentaire à proximité de la TOC montre qu'elle subit une surrection pendant le post-rift en relation avec la mise en place d'un volcan et des coulées et sills associés. Cette évolution peut être comparée aux modèles d'évolution les plus récents des marges passives. La marge conjuguée (au sud-est du Golfe d'Aden) présente la même segmentation que la marge nord-est (d'Acremont et al., 2005). Une analyse microstructurale de l'île de Socotra (marge sud émergée) permet de comparer les marges et de mieux contraindre le rifting oblique. Comme sur la marge nord, les directions des failles normales sont réparties en trois familles : N110°E perpendiculaire à l'extension, N70°E parallèle à la direction du Golfe, N90°E intermédiaire. L'inversion des données microstructurales montre des directions d'extension en accord avec les trois familles de failles. Des chronologies sont observées depuis une direction d'extension N20°E vers N160°E et réciproquement. Les variations de la direction d'extension suggèrent une alternance des champs de contraintes pendant la phase de rifting du Golfe d'Aden. Des modélisations analogiques dans le Golfe d'Aden ont permis de mieux cerner son développement en rifting oblique. Les horsts et les grabens sont disposés en échelons, avec des formes sigmoïdes. Les trois familles de failles liées à l'obliquité sont observées : N110°E, N90°E et N70°E. L'évolution des directions des failles montre une dominance des failles N90°E et N110°E au début de l'extension puis le développement plus tardif de failles N70°E et ce, avec ou sans la présence initiale d'une hétérogénéité oblique à l'extension. Enfin des failles N110°E sont de nouveau formées. Le modèle conceptuel de Bellahsen et al. (2006) serait donc applicable pour les premiers stades d'évolution : la réactivation de bassins N110°E et la formation de nouvelles failles en échelons s'effectuent sous la direction d'extension des plaques (N20°E) depuis 35 Ma. Puis l'amincissement de la lithosphère se poursuivant le long de la direction du Golfe (N70°E), les contraintes locales dues aux variations latérales d'épaisseur provoquent la formation de failles N70°E et la réactivation de failles N110°E. La chronologie d'extension N20°E puis N160°E observée sur les marges est donc expliquée. Nous proposons une troisième étape : une fois l'amincissement du rift suffisamment important, les contraintes locales ne s'exercent que sur les bords du rift ou sur les horsts majeurs. Partout ailleurs des failles N110°E sont formées et les failles N70°E sont réactivées de manière oblique. La seconde chronologie d'extension N160°E puis N20°E des études microstructurales est aussi expliquée. Les horsts peuvent subir des rotations horaires importantes qui induisent des zones de cisaillement senestres. Elles pourraient initier les nombreuses zones de transfert concordant avec la forte segmentation du le Golfe d'Aden.
17

Rifting of the Guinea Margin in the Equatorial Atlantic from 112 to 84 MA: Implications of Paleo-Reconstructions for Structure and Sea-Surface Circulation

Edge, Russ January 2014 (has links)
The Guinea Plateau is a shallow-marine, flat-lying bathymetric province situated along the equatorial West African margin, offshore Republic of Guinea. The Guinea Plateau and the conjugate Demerara Plateau hold particular geologic significance, as they represent the final point of separation between the African and South American continents during Gondwana break-up. Recent interpretation of both 2-D and 3-D seismic surveys along the Guinean margin have illuminated subsurface features related to Early Cretaceous crustal extension. Seismic structural investigations on these datasets suggest that the majority of extension is accommodated along large-scale listric normal faults located on a relatively narrow (<50 km) continental slope (up to ~39% extension). Minimal faulting reveals that little upper-crustal extension has occurred on the Guinea Plateau. Additionally, multiple 2-D seismic profiles image the transition from continental crust on the plateau and slope, to oceanic crust in the deeper marine basin. This continent-ocean boundary is the most representative boundary when testing the accuracy of plate reconstructions. Mapping of both the continent-ocean boundary and fracture zones across the equatorial Atlantic suggests that the Demerara Plateau and the South American plate are too far south in previous pre-rift reconstructions. A revised model introduces 20 km of Early Cretaceous NNW-oriented contraction across the Amazon Basin; an area of relative weakness where both geologic and geophysical data support such accommodation. Sea-surface flow models, which used this revised reconstruction and interpreted paleo-bathymetric data, predict upwelling throughout the newly formed equatorial seaway, and later along the West African margin during periods of regional organic-rich black shale deposition. With reduced decomposition of organic matter strongly correlated to upwelling, being able to predict these zones is of particular significance to petroleum companies, who have recently started exploring both the equatorial South American and West African coastlines.
18

Structural and thermal evolution of the Gulf Extensional Province in Baja California, Mexico: implications for Neogene rifting and opening of the Gulf of California

Seiler, C. January 2009 (has links)
The Gulf of California in western Mexico is a prime example of a young passive margin that is currently undergoing the transition from continental rifting to seafloor spreading. With less than ~25 km of the width of the original continental surface area submerged, the northern Gulf Extensional Province represents a key area to assess the history of strain localisation during the early stages of continental extension. Geological mapping revealed that the basins and ranges of the Sierra San Felipe, located in the hanging wall of the Main Gulf Escarpment, are bounded to the east by an en-echelon array of left-stepping moderate- to low-angle normal faults that represent the next dominant set of normal faults from the break-away fault in direction of transport. Structural displacement estimates suggest up to ~4.5–9 km of broadly east-directed extension on the Las Cuevitas, Santa Rosa and Huatamote detachments. Fault kinematics suggest a transtensional stress regime with NE- to SE-directed extension and permutating vertical and N–S subhorizontal shortening. Clockwise vertical-axis block rotations and constrictional folding of the detachments were an integral part of the late Miocene to Pleistocene deformation history of the San Felipe fault array. This overall constrictional strain regime is indistinguishable from the present-day deformation in the Gulf Extensional Province and indicates that the fault array formed during a single phase of integrated transtensional shearing since rifting began in the late Miocene. / Apatite fission track (AFT) and (U-Th)/He results of Cretaceous crystalline basement samples from the Sierra San Felipe record a three-stage Cenozoic cooling history. Moderate cooling (~4–7ºC/m.y.) during late Paleocene to Eocene times is attributed to progressive down-wearing and bevelling of the ancestral Peninsular Ranges. Beginning at ~45–35 Ma, a period of tectonic quiescence with cooling rates of ≤1ºC/m.y. marks final unroofing of the basement and the development of a regional Oligocene to Miocene peneplain. Thermal modelling of samples from the footwall of the Las Cuevitas and Santa Rosa fault systems indicates that accelerated cooling began at ~9–8 Ma. This cooling pulse is attributed to tectonic denudation of the footwall and implies that faulting initiated synchronously on both detachments at ~9–8 Ma. Late Miocene deformation occurred distributed throughout the Sierra San Felipe, but started waning after the Pacific-North America plate boundary had localised into the Gulf of California by ~4.7 Ma / During a late Pliocene structural reorganisation in the northern Gulf, the locus of extension shifted from the Tiburón to the Delfín basins, thereby initiating strike-slip faulting on the Ballenas fracture zone, a transform fault located approximately 1.5–4.5 km offshore in central Baja California. This is consistent with low-temperature thermochronometric data from two horizontal transects perpendicular to the strike of the transform, which document a pronounced late Pliocene to Pleistocene heating event that is related to the structural and/or magmatic evolution of the transform fault. During reheating, maximum paleotemperatures reached >100–120ºC near the coast, but did not exceed ~60ºC some 5–8 km further inland. Highly non-systematic overprinting patterns are best explained by circulating hydrothermal fluids, which are most likely associated with magmatic leaking along the transform fault. / AFT and (U-Th)/He ages from a vertical profile collected on the Libertad escarpment, which forms part of the Main Gulf Escarpment in central Baja, pre-date Neogene extension and indicate that rift-related denudation was insufficient to expose samples from temperatures higher than the sensitivity zones of the two systems. One sample from the base of the escarpment however, records a middle to late Miocene hydrothermal overprint and suggests that extension in central Baja California likely initiated before ~10–8 Ma.
19

Origin and nature of the regional detachment fault in the area of the deep Galicia margin

Leythaeuser, Thomas. Unknown Date (has links) (PDF)
University, Diss., 2004--Kiel.
20

A Geodynamic Investigation of Magma-Poor Rifting Processes and Melt Generation: A Case Study of the Malawi Rift and Rungwe Volcanic Province, East Africa

Njinju, Emmanuel A. 12 January 2021 (has links)
Our understanding of how magma-poor rifts accommodate strain remains limited largely due to sparse geophysical observations from these rift systems. To better understand magma-poor rifting processes, chapter 1 of this dissertation is focused on investigating the lithosphere-asthenosphere interactions beneath the Malawi Rift, a segment of the magma-poor Western Branch of the East African Rift (EAR). Chapter 2 and 3 are focused on investigating the sources of melt beneath the Rungwe Volcanic Province (RVP), an anomalous volcanic center located at the northern tip of the Malawi Rift. In chapter 1, we use the lithospheric structure of the Malawi Rift derived from the World Gravity Model 2012 to constrain three-dimensional (3D) numerical models of lithosphere-asthenosphere interactions, which indicate ~3 cm/yr asthenospheric upwelling beneath the thin lithosphere (115-125 km) of the northern Malawi Rift and the RVP from lithospheric modulated convection (LMC) that is decoupling from surface motions. We suggest that the asthenospheric upwelling may generate decompression melts which weakens the lithosphere thereby enabling extension. The source of asthenospheric melt for the RVP is still contentious. Some studies suggest the asthenospheric melt beneath the RVP arises from thermal perturbations in the upper mantle associated with plume head materials, while others propose decompression melting from upwelling asthenosphere due to LMC where the lithosphere is thin. Chapter 2 of this dissertation is focused on testing the hypothesis that asthenospheric melt feeding the RVP can be generated from LMC using realistic constraints on the mantle potential temperature (Tp). We develop a 3D thermomechanical model of LMC beneath the RVP and the entire Malawi Rift that incorporates melt generation. We find decompression melt associated with LMC upwelling (~3 cm/yr) occurs at a maximum depth of ~150 km localized beneath the RVP. Studies of volcanic rock samples from the RVP indicate plume signatures which are enigmatic since the RVP is highly localized, unlike the large igneous provinces in the Eastern Branch of the EAR. In chapter 3, we test the hypothesis that the melt beneath the RVP is generated from plume materials. We investigate melt generation from plume-lithosphere interactions (PLI) beneath the RVP by developing a 3D seismic tomography-based convection (TBC) model beneath the RVP. The seismic constraints indicate excess temperatures of ~250 K in the sublithospheric mantle beneath the RVP suggesting the presence of a plume. We find a relatively fast upwelling (~10 cm/yr) beneath the RVP which we interpret as a rising plume. The TBC upwelling generates decompression melt (~0.25 %) at a maximum depth of ~200 km beneath the RVP where the lithosphere is thinnest (~100 km). Our results demonstrate that an excess heat source from may be plume materials is necessary for melt generation in the sublithospheric mantle beneath the RVP because passive asthenospheric upwelling of ambient mantle will require a higher than normal Tp to generate melt. Studies of volcanic rock samples from the RVP indicate plume signatures which are enigmatic since the RVP is highly localized, unlike the large igneous provinces in the Eastern Branch of the EAR. In chapter 3, we test the hypothesis that the melt beneath the RVP is generated from plume materials. We investigate melt generation from plume-lithosphere interactions (PLI) beneath the RVP by developing a 3D seismic tomography-based convection (TBC) model beneath the RVP. The seismic constraints indicate excess temperatures of ≈ 250K in the sublithospheric mantle beneath the RVP suggesting the presence of a plume. We find a relatively fast upwelling (≈10 cm/yr) beneath the RVP which we interpret as a rising plume. The TBC upwelling generates decompression melt (≈0.25 %) at a maximum depth of ≈200 km beneath the RVP where the lithosphere is thinnest (≈100 km). Our results demonstrate that an excess heat source from may be plume materials is necessary for melt generation in the sublithospheric mantle beneath the RVP because passive asthenospheric upwelling of ambient mantle will require a higher than normal Tp to generate melt. / Doctor of Philosophy / Studies suggest the presence of hot, melted rock deep in the continents makes them weaker and easier to break apart, however, our understanding of how continents with less melted rock break apart remains limited largely due to sparse geophysical observations from these dry areas. To better understand how continents with less melted rock break apart, chapter 1 of this dissertation is focused on investigating the interactions between the rigid part of the Earth, called lithosphere, and the underlying lower viscosity rock layer called asthenosphere beneath the Malawi Rift, a segment of the magma-poor Western Branch of the East African Rift (EAR). Chapter 2 and 3 are focused on investigating the sources of melt beneath the Rungwe Volcanic Province (RVP), an anomalous volcanic center located at the northern tip of the Malawi Rift. In chapter 1, we use the lithospheric structure of the Malawi Rift derived from gravity data to constrain three-dimensional (3-D) numerical models of lithosphere-asthenosphere interactions, which indicate ~3 cm/yr asthenospheric upwelling beneath the thin lithosphere (115-125 km) of the northern Malawi Rift and the RVP that does not seem to drive movements at the surface. We suggest that the asthenospheric upwelling may generate melted rock which weakens the lithosphere thereby enabling extension. However, the source of asthenospheric melt for the RVP is still contentious. Some studies suggest the asthenospheric melt beneath the RVP arises from thermal perturbations in the upper mantle associated with rising mantle rocks or plume head materials, while others propose melting occurs from upwelling asthenosphere due to lithospheric modulated convection (LMC) where the lithosphere is thin. Chapter 2 of this dissertation is focused on testing the hypothesis that asthenospheric melt feeding the RVP can be generated from LMC. We develop a 3D thermomechanical model of LMC beneath the RVP and the entire Malawi Rift that incorporates melt generation. We find decompression melt associated with LMC upwelling (~3 cm/yr) occurs at a maximum depth of ~150 km localized beneath the RVP. Studies of volcanic rock samples from the RVP indicate plume signatures which are enigmatic since the RVP is highly localized, unlike the large igneous provinces in the Eastern Branch of the EAR. In chapter 3, we investigate melt generation from plume-lithosphere interactions (PLI) beneath the RVP. We develop a 3D model of convection using information from seismology we call tomography-based convection (TBC) beneath the RVP. The seismic data indicate excess temperatures of ~250 K beneath the RVP suggesting the presence of a plume. We find a relatively fast upwelling (~10 cm/yr) beneath the RVP which we interpret as a rising plume. The TBC upwelling generates decompression melt at a maximum depth of ~200 km beneath the RVP. Our results demonstrate that an excess heat source from may be plume materials is necessary for melt generation in the sublithospheric mantle beneath the RVP because passive asthenospheric upwelling of ambient mantle will require a higher than normal mantle potential temperatures to generate melt.

Page generated in 0.0646 seconds